Skip to main content

Advertisement

Log in

Profiteers of environmental change in the Swiss Alps: increase of thermophilous and generalist plants in wetland ecosystems within the last 10 years

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

It has been predicted that Europe will experience a rise in temperature of 2.2–5.3 °C within this century. This increase in temperature may lead to vegetation change along altitudinal gradients. To test whether vegetation composition has already changed in the recent decade due to current warming (and other concomitant environmental changes), we recorded plant species composition in 1995 and 2005/2006 in Swiss pre-alpine fen meadows (800–1,400 m a.s.l.). Despite no obvious changes in the management of these fens, overall, plant species richness (cumulative number of plant species at five plots per site) significantly increased over this period. This was mainly due to an increase in the number of thermophilous, rich-soil-indicator and shade-indicator species, which corresponded to increased community productivity and shading within the vegetation layer. In contrast, fen specialists significantly declined in species numbers. The strongest species shifts occurred at the lowest sites, which overall had a higher colonization rate by new species than did sites at higher altitudes. Vegetation change along the altitudinal gradient was also affected by different types of land management: early-flowering species and species with low habitat specificity had high colonization rates in grazed fens, especially at low altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous (1997) Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten, vol 2 Bodenuntersuchung zur Standort-Charakterisierung; Eidgenössische Forschungsanstalten für landwirtschaftlichen Pflanzenbau, Zürich

  • Anonymous (2004) Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten, vol 1 Boden- und Substratuntersuchungen zur Düngeberatung; Eidgenössische Forschungsanstalten für landwirtschaftlichen Pflanzenbau, Zürich

  • Arft AM, Walker MD, Gurevitch J et al (1999) Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • BAFU/BFS (ed) (2007) Umwelt Schweiz 2007. UVEK, BAFU, EDI, BFS, Bern

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Bazzaz A (1996) Plants in changing environments: linking physiological, population and community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bergamini A, Peintinger M, Schmid B, Urmi E (2001a) Effects of management and altitude on bryophyte species diversity and composition in montane calcareous fens. Flora 196:180–193

    Google Scholar 

  • Bergamini A, Pauli D, Peintinger M, Schmid B (2001b) Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. J Ecol 89:920–929

    Article  Google Scholar 

  • Bergamini A, Peintinger M, Fakheran S, Moradi H, Schmid B, Joshi J (2009a) Loss of habitat specialists despite conservation management in wetland remnants 1995–2006. Perspect Plant Ecol Evol Syst 11:65–79

    Article  Google Scholar 

  • Bergamini A, Ungricht S, Hofmann H (2009b) An elevational shift of cryophilous bryophytes in the last century—an effect of climate warming? Divers Distrib 15:871–879

    Article  Google Scholar 

  • Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Hansen AS, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57:227–236

    Article  Google Scholar 

  • Bush MB, Silman MR, Urrego DH (2004) 48,000 years of climate and forest change in a biodiversity hot spot. Science 303:827–829

    Article  PubMed  CAS  Google Scholar 

  • BUWAL (1990) Inventar der Flachmoore von nationaler Bedeutung. Entwurf für die Vernehmlassung. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern

  • BUWAL (2002) Moore und Moorschutz in der Schweiz. Bundesamt für Umwelt, Wald und Landschaft, Bern

  • CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. In: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • Dietl W (1975) Die landschaftsökologische Bedeutung der Flachmoore. Beispiel: Davallseggenrieder. Jahrb Ver Schutze Bergwelt 40:47–64

    Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart

    Google Scholar 

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araujo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gegout JC, Gomez-Garcia D, Grytnes JA, Heegaard E, Hoistad F, Nogues-Bravo D, Normand S, Puscas M, Sebastia MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Global Change Biol 17:2330–2341

    Article  Google Scholar 

  • Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737

    Article  Google Scholar 

  • Fischer MA, Adler W, Oswald K (2005) Exkursionsflora für Österreich, Liechtenstein und Südtirol, 2nd edn. Land Oberösterreich. Biologiezentrum der OÖ Landesmuseen, Linz

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  PubMed  CAS  Google Scholar 

  • Frei E, Bodin J, Walther GR (2010) Plant species’ range shifts in mountainous areas-all uphill from here? Bot Helv 120:117–128

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  Google Scholar 

  • Grünig A (ed) (1994) Mires and man. In: Mire conservation in a densely populated country—the Swiss experience. Swiss Federal Research Institute WSL, Birmensdorf

  • Houghton JT, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. In: Working Group I of IPCC. Cambridge University Press, Cambridge

  • Hulme PE (2011) Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions. New Phytol 189:272–281

    Article  PubMed  Google Scholar 

  • Joshi J, Stoll P, Rusterholz HP, Schmid B, Dolt C, Baur B (2006) Small-scale experimental habitat fragmentation reduces colonization rates in species-rich grasslands. Oecologia 148:144–152

    Article  PubMed  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Kienast F, Wildi O, Brzeziecki B (1998) Potential impacts of climate change on species richness in mountain forests—an ecological risk assessment. Biol Conserv 83:291–305

    Article  Google Scholar 

  • Kjellstrom E, Barring L, Jacob D, Jones R, Lenderink G, Schär C (2007) Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Change 81:249–265

    Article  Google Scholar 

  • Klaus G (ed) (2007) Zustand und Entwicklung der Moore in der Schweiz. Ergebnisse der Erfolgskontrolle Moorschutz. Umwelt-Zustand Nr. 0730. Bundesamt für Umwelt, Bern, pp 40–55

  • Klötzli F (1986) Tendenzen zur Eutrophierung in Feuchtgebieten. Veröff Geobot Inst der Eidgenöss Techn Hochsch, Stift Rübel, Zürich 87:343–361

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kudernatsch T, Beck S, Krenzer M, Fischer A, Bernhardt M, Franz H, Vogel M, Abs C (2005) Recent changes in species composition and species richness of alpine grasslands in Berchtesgaden Biosphere Reserve and National Park. In: 2nd and 3rd GLOCHAMORE workshops. UNESCO, Paris, pp 103–115

  • Landolt E (1977) Ökologische Zeigerwerte zur Schweizer Flora. Veröff Geobot Inst der Eidgenöss Techn Hochsch, Stift Rübel, Zürich 64:1–208

    Google Scholar 

  • Lauber K, Wagner G (1996) Flora Helvetica. Verlag Paul Haupt, Bern

    Google Scholar 

  • le Roux PC, Mcgeoch MA (2008) Rapid range expansion and community reorganization in response to warming. Glob Change Biol 14:2950–2962

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Marquard L, Weigelt A, Roscher C, Gubsch M, Lipowski A, Schmid B (2009) Positive biodiversity—productivity relationship due to increased plant density. J Ecol 97:696–704

    Article  Google Scholar 

  • Molau U (1993) Phenology and reproductive ecology in six subalpine species of Rhinanthoideae (Scrophulariaceae). Opera Botanica 121:7–17

    Google Scholar 

  • Nilsson IN, Nilsson SG (1982) Turnover of vascular plant-species on small islands in Lake Möckeln, South Sweden 1976–1980. Oecologia 53:128–133

    Article  Google Scholar 

  • North N, Kljun N, Kasser F, Heldstab J, Maibach M, Reutimann J, Guyer M (2007) Klimaänderungen in der Schweiz. Indikatoren zu Ursachen, Auswirkungen, Massnahmen. Bundesamt für Umwelt, Bern

  • Odland A, Høitomt T, Olsen SL (2010) Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arct Antarct Alp Res 42:458–470

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107

    Article  Google Scholar 

  • Pauli D, Peintinger M, Schmid B (2002) Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic Appl Ecol 3:255–266

    Article  Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA*master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Article  Google Scholar 

  • Pearman PB, Guisan A, Zimmermann NE (2011) Impacts of climate change on Swiss biodiversity: an indicator taxa approach. Biol Cons 144:866–875

    Article  Google Scholar 

  • Peintinger M, Bergamini A, Schmid B (2003) Species-area relationships and nestedness of four taxonomic groups in fragmented wetlands. Basic Appl Ecol 4:385–394

    Article  Google Scholar 

  • Primault B (1992) Temperature data used to determine a theoretical start to forest tree growth in spring. Theor Appl Climatol 45:139–143

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 21 June 2011

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Rothmaler W (1991) Exkursionsflora von Deutschland. Volk und Wissen, Berlin

    Google Scholar 

  • Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Saetersdal M, Birks HJB (1997) A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. J Biogeogr 24:127–152

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Sheldon KS, Yang S, Tewksbury JJ (2011) Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol Lett 14:1191–1200

    Article  PubMed  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101

    Article  Google Scholar 

  • Tamis WLM, Van ‘t Zelfde M, van der Meijden R, de Haes HAU et al (2005) Changes in vascular plant biodiversity in the Netherlands in the 20th century explained by their climatic and other environmental characteristics. Clim Change 72:37–56

    Article  Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: A review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W (2007) Biodiversity—climate change and the ecologist. Nature 448:550–552

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. P Natl Acad Sci USA 102:8245–8250

    Article  CAS  Google Scholar 

  • Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947

    Article  Google Scholar 

  • Vittoz P, Dussex N, Wassef J, Guisan A (2009) Diaspore traits discriminate good from weak colonisers on high-elevation summits. Basic Appl Ecol 10:508–515

    Article  Google Scholar 

  • Voigt W, Perner J, Jones H (2007) Using functional groups to investigate community response to environmental changes: two grassland case studies. Glob Change Biol 13:1710–1721

    Article  Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological footprint of climate change. P Roy Soc Lond B Bio 272:1427–1432

    Article  Google Scholar 

  • Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36:363–373

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the nature conservancy agencies and municipal authorities for providing information on the study sites, and to all the farmers and landowners who allowed us to work on their land. We would like to thank the three anonymous reviewers for improvements on an earlier version of this manuscript. H.M. and S.F. were funded by the Ministry of Science, Research and Technology in Iran. This work was also supported by a grant from the Swiss National Science Foundation to J. J. (no. 3100AO-104006), a grant of the Stiftung für wissenschaftliche Forschung at the University of Zurich to B.S and a grant of the Federal Office for the Environment FOEN to A.B. We thank the Federal Office of Meteorology and Climatology (MeteoSwiss) for providing the climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 182 kb)

Supplementary material 2 (DOC 46.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, H., Fakheran, S., Peintinger, M. et al. Profiteers of environmental change in the Swiss Alps: increase of thermophilous and generalist plants in wetland ecosystems within the last 10 years. Alp Botany 122, 45–56 (2012). https://doi.org/10.1007/s00035-012-0102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-012-0102-3

Keywords

Navigation