Skip to main content
Log in

Sparse Dual Frames and Dual Gabor Functions of Minimal Time and Frequency Supports

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Exploitation of the optimality of (non-exact) frames from a sparse dual point of view is presented. Sparse dual frames and dual Gabor functions of the minimal time and/or frequency supports are studied and constructed through the notion of sparse representations. Conditions on the sparsest dual frames and the dual Gabor functions of the minimal time and/or frequency supports are discussed. Algorithms and examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balazs, P., Feichtinger, H.G., Hampejs, M., Kracher, G.: Double preconditioning for Gabor frames. IEEE Trans. Signal Process. 54(12), 4597–4610 (2006)

    Article  MATH  Google Scholar 

  2. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J.: Compressive sampling. In: International Congress of Mathematicians, vol. 3, pp. 1433–1452. European Mathematical Society, Zürich (2006)

    Google Scholar 

  4. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9–10), 589–592 (2008)

    MATH  Google Scholar 

  5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  6. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  Google Scholar 

  7. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  10. Christensen, O.: Pairs of dual Gabor frame generators with compact support and desired frequency localization. Appl. Comput. Harmon. Anal. 20, 403–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christensen, O., Kim, H.O., Kim, R.Y.: Gabor windows supported on [−1,1] and compactly supported dual windows. Appl. Comput. Harmon. Anal. 28, 89–103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christensen, O., Kim, R.Y.: On dual Gabor frame pairs generated by polynomials. J. Fourier Anal. Appl. 16, 1–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christensen, O., Laugesen, R.S.: Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal. Image Process, Int. J. 9(1–3), 77–89 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Daubechies, I., Landau, H.J., Landau, Z.: Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl. 1(4), 437–478 (1994)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. USA 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elad, M., Bruckstein, A.M.: A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inf. Theory 48(9), 2558–2567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms: Theory and Application. Birkhäuser, Boston (1998)

    Book  Google Scholar 

  19. Feichtinger, H.G., Werther, T.: Improved locality for irregular sampling algorithms. In: Proc. ICASSP, vol. 6, pp. 3834–3837 (2000)

    Google Scholar 

  20. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx, April 2011

  21. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)

    Article  MathSciNet  Google Scholar 

  22. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  23. Gröchenig, K., Schwab, H.: Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces. SIAM J. Matrix Anal. Appl. 24(4), 899–913 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hampejs, M., Kracher, G.: The inversion of Gabor-type matrices. Signal Process. 87(7), 1670–1676 (2007)

    Article  MATH  Google Scholar 

  25. Hayashi, E., Li, S., Sorrells, T.: Gabor duality characterizations. In: Heil, C. (ed.) Harmonic Analysis and Applications, pp. 127–137. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  26. Janssen, A.: The duality condition for Weyl-Heisenberg frames. In: Gabor Analysis and Algorithms: Theory and Application. Birkhäuser, Boston (1998)

    Google Scholar 

  27. Janssen, A.J.E.M.: Duality and biorthogonality for discrete-time Weyl-Heisenberg frames. Technical report, Phillips Electronics (1994)

  28. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Laugesen, R.: Gabor dual spline windows. Appl. Comput. Harmon. Anal. 27, 180–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, S.: General theory of discrete Gabor expansion. In: Laine, A.F., Unser, M.A. (eds.) Wavelet Applications in Signal and Image Processing II, vol. 2303, pp. 274–285. SPIE, Bellingham (1994)

    Chapter  Google Scholar 

  31. Li, S.: Fast and parametric algorithm for discrete Gabor expansions and the role of various dual windows. In: Szu, H.H. (ed.) Wavelet Applications II, vol. 2491, pp. 935–946. SPIE, Bellingham (1995)

    Chapter  Google Scholar 

  32. Li, S.: On general frame decompositions. Numer. Funct. Anal. Optim. 16(9), 1181–1191 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, S.: Discrete multi-Gabor expansions. IEEE Trans. Inf. Theory 45(6), 1954–1967 (1999)

    Article  MATH  Google Scholar 

  34. Li, S.: Biorthogonal duals of B-spline Riesz sequences via pseudoframes for subspace. Preprint (2006)

  35. Li, S.: Parametric biorthogonal wavelets and filter banks via pseudoframes for subspaces. Preprint (2009)

  36. Li, S., Dennis, J., Healy, M.: A parametric class of discrete Gabor expansions. IEEE Trans. Signal Process. 44(2), 201–211 (1996)

    Article  Google Scholar 

  37. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  38. Natarajan, B.K.: Sparse approximate solutions to linear-systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prinz, P.: Theory and algorithms for discrete 1-dimensional Gabor frames. Master’s thesis, University of Vienna (1996)

  40. Qiu, S., Feichtinger, H.G.: Discrete Gabor structures and optimal representations. IEEE Trans. Signal Process. 43(10), 2258–2268 (1995)

    Article  Google Scholar 

  41. Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in L 2(ℝd). Duke Math. J. 89(2), 237–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Strohmer, T.: Numerical algorithms for discrete Gabor expansions. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Application, pp. 267–294. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  43. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  44. Walnut, D.F.: Continuity properties of the Gabor frame operator. J. Math. Anal. Appl. 165(2), 479–504 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Werther, T., Eldar, Y.C., Subbanna, N.K.: Dual Gabor frames: theory and computational aspects. IEEE Trans. Signal Process. 53(11), 4147–4158 (2005)

    Article  MathSciNet  Google Scholar 

  46. Wexler, J., Raz, S.: Discrete Gabor expansions. Signal Process. 21(3), 207–220 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to reviewers for their thoughtful comments that greatly improve the focus and presentation of the article. S. Li is partially supported by the Dean’s Research Fund, School of Information, Renmin University of China, and by NSF grant DMS-1010058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiebin Mi.

Additional information

Communicated by Akram Aldroubi.

Appendices

Appendix A: Proof of Theorem 3.1

Proof

Since {g m,n } and {γ m,n } are a pair of Gabor frame and dual Gabor frame for ℂd,

$$ \forall f \in\mathbb{C}^d,\quad f = \sum_{n=0}^{N-1} \sum _{m=0}^{M-1} \langle{f}, {\gamma_{m,n }} \rangle g_{m,n}. $$
(A.1)

We can rewrite (A.1) as, for all t=0,…,d−1,

which is equivalent to, for all t,τ=0,…,d−1,

$$\sum_{n=0}^{N-1} \sum _{m=0}^{M-1} \gamma^*_{m,n}(\tau) g_{m,n}(t) = \delta(t-\tau). $$

Substituting expressions of γ m,n (⋅) and g m,n (⋅) into the left hand side, we have, for t,τ=0,…,d−1,

(A.2)

Based on the orthogonality relation

$$ \sum_{m=0}^{M-1} e^{ 2\pi i (t-\tau) \frac{m }{M} } = \left \{ \begin{array}{l@{\quad}l} M, & \hbox{$(t-\tau) \bmod M= 0$;} \\ 0, & \hbox{otherwise.} \end{array} \right . $$
(A.3)

The previous system can be reduced further.

Fix τ∈{0,…,d−1}, for t=0,…,d−1, when (tτ)modM≠0, (A.2) (A.2) holds automatically. When t=τ, (A.2) is reduced to

$$\sum_{n=0}^{N-1} \gamma^{*}( \tau-na) g(t - na) = \frac{1}{M}. $$

When (tτ)modM=0 and tτ, (A.2) is reduced to

$$\sum_{n=0}^{N-1} \gamma^{*}( \tau-na) g(t - na) = 0. $$

A combination of all scenarios above leads to the proposed duality condition. □

Appendix B: Proof of Lemma 4.1

Proof

Given any \(h \in\operatorname{ker}(A)\backslash\{ 0 \}\), based on the support of x, ∥x+h1 can be divided into two parts, i.e.,

Since \(\sum_{t \in T} h(t) \operatorname{sgn}( x )(t) + \sum_{t \in T^{C}} |h(t)| > 0\), we see that

$$\| x + h \|_{1} \geq\| x \|_{1} + \sum _{t \in T} h(t) \operatorname{sgn}( x ) (t) + \sum _{t \in T^C} \bigl\vert h(t)\bigr\vert> \| x \|_{1}. $$

Namely, x is the unique solution to (P 1).

For the other direction, assume there exists some \(h_{0} \in \operatorname{ker}(A) \backslash\{ 0 \}\) satisfying

$$\sum_{t\in T} h_0(t) \operatorname{sgn}( x ) (t) + \sum_{t\in T^C} \bigl\vert h_0(t)\bigr\vert\leq0. $$

We choose a sufficiently small ϵ>0 such that, for all tT,

$$\bigl\vert x(t)\bigr\vert+ \epsilon h_0(t) \operatorname{sgn}( x ) (t) \geq0. $$

Then

Since \(\sum_{t\in T} h_{0}(t) \operatorname{sgn}( x )(t) + \sum_{t\in T^{C}} |h_{0}(t)| \leq0\), and ϵ>0,

$$\| x + \epsilon h_0 \|_{1} \leq\| x \|_{1}, $$

which is contradictory to x being the unique solution to (P 1). The claim then follows. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Liu, Y. & Mi, T. Sparse Dual Frames and Dual Gabor Functions of Minimal Time and Frequency Supports. J Fourier Anal Appl 19, 48–76 (2013). https://doi.org/10.1007/s00041-012-9243-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-012-9243-4

Keywords

Mathematics Subject Classification (2010)

Navigation