Skip to main content
Log in

Letter to the Editor: On the Numerical Evaluation of Bandpass Prolates

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This letter provides a technique for numerical evaluation of certain eigenfunctions of the integral kernel operator corresponding to time truncation of a square-integrable function to a finite interval, followed by frequency limiting to frequencies in an annular band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bouwkamp, C.J.: On spheroidal wave functions of order zero. J. Math. Phys. 26, 79–92 (1947)

    MathSciNet  MATH  Google Scholar 

  2. Boyd, J.P.: Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199, 688–716 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, J.P.: Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions—prolate elements. ACM Trans. Math. Softw. 31, 149–165 (2005)

    Article  MATH  Google Scholar 

  4. Byerly, W.E.: An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics: With Applications to Problems in Mathematical Physics. Dover Publications, New York (1959)

    MATH  Google Scholar 

  5. Donoho, D.L., Stark, P.B.: A note on rearrangements, spectral concentration, and the zero-order prolate spheroidal wavefunction. IEEE Trans. Inf. Theory 39, 257–260 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting. Springer, New York (2012)

    Book  MATH  Google Scholar 

  7. Hogan, J.A., Izu, S., Lakey, J.D.: Sampling approximations for time- and bandlimiting. Sampl. Theory Signal. Image Process. 9, 91–117 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Khare, K.: Bandpass sampling and bandpass analogues of prolate spheroidal functions. Signal Process. 86(7), 1550–1558 (2006)

    Article  MATH  Google Scholar 

  9. Landau, H.J.: On the density of phase-space expansions. IEEE Trans. Inf. Theory 39, 1152–1156 (1993)

    Article  MATH  Google Scholar 

  10. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. SenGupta, I., Sun, B., Jiang, W., Chen, G., Mariani, M.C.: Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions. J. Fourier Anal. Appl. 18(1), 182–210 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

    MathSciNet  MATH  Google Scholar 

  13. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17, 805–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Lakey.

Additional information

Communicated by Hans G. Feichtinger.

Appendices

Appendix A: Proof of Proposition 2

One has

Interchanging the roles of n and m one has

Subtracting the two results in the identity

$$(\chi_n-\chi_m ) \int_x^1 \varphi_n(t) \varphi_m(t) \,\mathrm {d}t = \bigl(t^2-1 \bigr) \biggl({\mathrm {d}\varphi_n\over \mathrm {d}t} \varphi_m (t) -{\mathrm {d}\varphi_m\over \mathrm {d}t} \varphi_n (t) \biggr) \biggm{|}_x^1 . $$

Appendix B: Proof of Proposition 1

Suppose that \(\psi=\sum \alpha_{n} \varphi_{n}^{c}\) with \(\varphi_{n}^{c}\) L 2(ℝ)-normalized. Then

where in the last line we use the fact that \(\{\varphi_{j}^{c}\}\) is complete in PW c and PW c⊂PW c . Use of the Plancherel identity, Eq. (3), the eigenfunction property of the prolates and the property P c P c=P c P c =P c, shows that the quantity \(\langle P_{c'}Q\varphi_{k}^{c},\varphi_{j}^{c}\rangle\) in the last line of the formula above may be written as

That is, for \(\psi=\sum_{k} \alpha_{k} \varphi_{k}^{c}\) one has

$$P_{c'c} Q\psi =\sum_k \alpha_k\lambda_k \biggl(\varphi_k^c- \sum_j R_{jk} \varphi_j^c \biggr) . $$

Thus if P cc =λψ then

$$\lambda \alpha_j =\lambda_j \alpha_j -\sum _k \lambda_k \alpha_k R_{jk} $$

or, equivalently, λ α=(IR)Λ α with α={α k }.

Notice that if α 2(ℤ+) and f α L 2[−1,1] is defined by \(f_{\alpha}(t)=\sum_{k}{\mathrm {i}^{k}\over\sqrt{\lambda_{k}} }\overline{\alpha_{k}} \varphi_{k}^{c}\) then

$$\langle R\alpha, \alpha\rangle =\int_{-c'/c}^{c'/c} \big|f_\alpha(t)\big|^2 \,\mathrm {d}t $$

and, since R is self adjoint,

$$\|I-R\|=\sup_{\boldsymbol{\alpha}:\|\boldsymbol{\alpha}\|=1} \bigl\langle (I-R)\boldsymbol{\alpha}, \boldsymbol{\alpha}\bigr\rangle = \sup_{\boldsymbol{\alpha}} \int_{c'/c\leq |t|\leq 1}\big|f_\alpha(t)\big|^2 \,\mathrm {d}t . $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, J.A., Lakey, J.D. Letter to the Editor: On the Numerical Evaluation of Bandpass Prolates. J Fourier Anal Appl 19, 439–446 (2013). https://doi.org/10.1007/s00041-012-9257-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-012-9257-y

Keywords

Mathematics Subject Classification (2000)

Navigation