Skip to main content
Log in

Rotationally Invariant Time–Frequency Scattering Transforms

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The focus of this paper is on the mathematical construction of a transform that is invariant to a finite rotation group and is stable to small perturbations. A key step in our theory lies in the construction of directionally sensitive functions that are partially generated by rotations. We call such a family a rotational uniform covering frame and by studying rotations of the frame, we derive the desired operator, which we call the rotational Fourier scattering transform. We prove that the transformation is rotationally invariant to a finite rotation group, is bounded above and below, is non-expansive, and contracts small translations and additive diffeomorphisms. To address the numerical aspects of this theory, we also construct digital versions of the frame and show how to faithfully truncate the transform. We also discuss connections between this new family of directional representations with previously constructed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andén, J., Mallat, S.: Deep scattering spectrum. IEEE Trans. Signal Process. 62(16), 4114–4128 (2014)

    Article  MathSciNet  Google Scholar 

  2. Arivazhagan, S., Ganesan, L., Padam Priyal, S.: Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognit. Lett. 27(16), 1976–1982 (2006)

    Article  Google Scholar 

  3. Bammer, R., Dörfler, M. : Invariance and stability of Gabor scattering for music signals. In: 2017 International Conference on Sampling Theory and Applications (SampTA), pp. 299–302. IEEE (2017)

  4. Bosch, E.H., Czaja, W., Murphy, J.M., Weinberg, D.: Anisotropic representations for superresolution of hyperspectral data. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, vol. 9472, pp. 947213. International Society for Optics and Photonics (2015)

  5. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)

    Article  Google Scholar 

  6. Candès, E.J.: Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6(2), 197–218 (1999)

    Article  MathSciNet  Google Scholar 

  7. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \(c^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  Google Scholar 

  8. Cheng, X., Chen, X., Mallat, S.: Deep Haar scattering networks. Inf. Inference 5(2), 105–133 (2016)

    Article  MathSciNet  Google Scholar 

  9. Czaja, W., Kavalerov, I., Li, W.: Scattering transforms and classification of hyperspectral images. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV, vol. 10644, p. 106440H. International Society for Optics and Photonics (2018)

  10. Czaja, W., King, E.J.: Isotropic shearlet analogs for \({L}^2(\mathbb{R}^k)\) and localization operators. Numer. Funct. Anal. Optim. 33(7–9), 872–905 (2012)

    Article  MathSciNet  Google Scholar 

  11. Czaja, W., King, E.J.: Anisotropic shearlet transforms for \({L}^2(\mathbb{R}^k)\). Math. Nachr. 287(8–9), 903–916 (2014)

    Article  MathSciNet  Google Scholar 

  12. Czaja, W., Li, W.: Analysis of time–frequency scattering transforms. Appl. Comput. Harmon. Anal. 47(1), 149–171 (2019)

    Article  MathSciNet  Google Scholar 

  13. Czaja, W., Manning, B., Murphy, J.M., Stubbs, K.: Discrete directional Gabor frames. Appl. Comput. Harmon. Anal. 45(1), 1–21 (2018)

    Article  MathSciNet  Google Scholar 

  14. Grafakos, L., Sansing, C.: Gabor frames and directional time-frequency analysis. Appl. Comput. Harmon. Anal. 25(1), 47–67 (2008)

    Article  MathSciNet  Google Scholar 

  15. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)

    Article  MathSciNet  Google Scholar 

  16. Hamamoto, Y., Uchimura, S., Watanabe, M., Yasuda, T., Mitani, Y., Tomita, S.: A Gabor filter-based method for recognizing handwritten numerals. Pattern Recognit. 31(4), 395–400 (1998)

    Article  Google Scholar 

  17. Hernández, Eugenio, Weiss, Guido: A First Course on Wavelets. CRC Press, Cambridge (1996)

    Book  Google Scholar 

  18. Hirn, M., Mallat, S., Poilvert, N.: Wavelet scattering regression of quantum chemical energies. Multiscale Model. Simul. 15(2), 827–863 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kavalerov, I., Li, W., Czaja, W., Chellappa, R.: Three-dimensional Fourier scattering transform and classification of hyperspectral images. arXiv preprint arXiv:1906.06804 (2019)

  20. Kong, W.K., Zhang, D., Li, W.: Palmprint feature extraction using 2-D Gabor filters. Pattern Recognit. 36(10), 2339–2347 (2003)

    Article  Google Scholar 

  21. Labate, D., Lim, W.-Q., Kutyniok, G., Weiss, G. : Sparse multidimensional representation using shearlets. In: Wavelets XI, vol. 5914, p. 59140U. International Society for Optics and Photonics (2005)

  22. Li, W.: Topics in Harmonic Analysis, Sparse Representations, and Data Analysis. PhD thesis, University of Maryland, College Park (2018)

  23. Mallat, S.: Group invariant scattering. Commun. Pure Appl. Math. 65(10), 1331–1398 (2012)

    Article  MathSciNet  Google Scholar 

  24. Mallat, S.: Understanding deep convolutional networks. Philos. Trans. R. Soc. A 374(2065), 20150203 (2016)

    Article  Google Scholar 

  25. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  26. Rowley, H.A., Baluja, S., Kanade, T: Rotation invariant neural network-based face detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, p. 38. IEEE Computer Society (1998)

  27. Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for texture discrimination. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1233–1240 (2013)

  28. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 3. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  29. Waldspurger, I.: Exponential decay of scattering coefficients. In: 2017 international conference on sampling theory and applications (SampTA), pp. 143–146. IEEE (2017)

  30. Wiatowski, T., Bölcskei, H.: A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans. Inf. Theory 64(3), 1845–1866 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zou, D., Lerman, G.: Graph convolutional neural networks via scattering. Appl. Comput. Harmon. Anal. https://doi.org/10.1016/j.acha.2019.06.003 (2019)

Download references

Acknowledgements

This work was supported in part by the LTS through Maryland Procurement Office, NSF DMS grant 1738003, Defense Threat Reduction Agency grant HDTRA 1-13-1-0015, and by the Army Research Office Grants W911 NF-15-1-0112 and W911 NF-16-1-0008. Weilin Li was supported by the National Science Foundation Grant DMS-1440140 while in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2017 semester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Li.

Additional information

Communicated by Thomas Strohmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaja, W., Li, W. Rotationally Invariant Time–Frequency Scattering Transforms. J Fourier Anal Appl 26, 4 (2020). https://doi.org/10.1007/s00041-019-09705-w

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-019-09705-w

Keywords

Mathematics Subject Classification

Navigation