Skip to main content
Log in

Spectral Analysis Beyond \(\ell ^2\) on Sierpinski Lattices

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study the spectrum of the Laplacian on the Sierpinski lattices. First, we show that the spectrum of the Laplacian, as a subset of \({\mathbb {C}}\), remains the same for any \(\ell ^p\) spaces. Second, we characterize all the spectral points for the lattices with a boundary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration modes of \(3n\)-gaskets and other fractals. J. Phys. A 41(1), 015101 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration spectra of finitely ramified, symmetric fractals. Fractals 16(3), 243–258 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bauer, F., Hua, B., Keller, M.: On the LP spectrum of Laplacians on graphs. Adv. Math. 248, 717–735 (2013)

    Article  MathSciNet  Google Scholar 

  4. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpiński gasket. Probab. Theory Relat. Fields 79(4), 543–623 (1988)

    Article  Google Scholar 

  5. Bockelman, B., Strichartz, R.S.: Partial differential equations on products of Sierpinski gaskets. Indiana Univ. Math. J. 56(3), 1361–1375 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chen, J.P., Teplyaev, A.: Singularly continuous spectrum of a self-similar Laplacian on the half-line. J. Math. Phys. 57(5), 052104 (2016)

    Article  MathSciNet  Google Scholar 

  7. Davies, E.B.: \(L^p\) spectral independence and \(L^1\) analyticity. J. Lond. Math. Soc. 52, 177–184 (1995)

    Article  Google Scholar 

  8. Davies, E.B.: Linear Operators and Their Spectra. Cambridge Studies in Advanced Mathematics, vol. 106. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  9. DeGrado, J.L., Rogers, L.G., Strichartz, R.S.: Gradients of Laplacian eigenfunctions on the Sierpinski gasket. Proc. Am. Math. Soc. 137(2), 531–540 (2009)

    Article  MathSciNet  Google Scholar 

  10. Fan, E., Khandker, Z., Strichartz, R.S.: Harmonic oscillators on infinite Sierpinski gaskets. Commun. Math. Phys. 287(1), 351–382 (2009)

    Article  MathSciNet  Google Scholar 

  11. Fukushima, M., Shima, T.: On a spectral analysis for the Sierpiński gasket. Potential Anal. 1, 1–35 (1992)

    Article  MathSciNet  Google Scholar 

  12. Hare, K.E., Steinhurst, B.A., Teplyaev, A., Zhou, D.: Disconnected Julia sets and gaps in the spectrum of Laplacians on symmetric finitely ramified fractals. Math. Res. Lett. 12(3), 537–553 (2012)

    Article  MathSciNet  Google Scholar 

  13. Ionescu, M., Rogers, L.G., Strichartz, R.S.: Pseudo-differential operators on fractals and other metric measure spaces. Rev. Mat. Iberoam. 29(4), 1159–1190 (2013)

    Article  MathSciNet  Google Scholar 

  14. Malozemov, L., Teplyaev, A.: Pure point spectrum of the Laplacians on fractal graphs. J. Funct. Anal. 129, 390–405 (1995)

    Article  MathSciNet  Google Scholar 

  15. Milnor, J.: Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton, NJ (2006)

    MATH  Google Scholar 

  16. Okoudjou, K.A., Rogers, L.G., Strichartz, R.S.: Szego limit theorems on the Sierpinski gasket. J. Fourier Anal. Appl. 16(3), 434–447 (2010)

    Article  MathSciNet  Google Scholar 

  17. Przytycki, F., Urbanski, M.: Conformal Fractals: Ergodic Theory Methods. London Mathematical Society Lecture Note Series, vol. 371. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  18. Quint, J.-F.: Harmonic analysis on the Pascal graph. J. Funct. Anal. 256(10), 3409–3460 (2009)

    Article  MathSciNet  Google Scholar 

  19. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York-London (1972)

    MATH  Google Scholar 

  20. Rudin, W.: Functional analysis. McGraw-Hill Series in Higher MathematicsMcGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg (1973)

    MATH  Google Scholar 

  21. Shima, T.: On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Jpn. J. Ind. Appl. Math. 13, 1–23 (1996)

    Article  MathSciNet  Google Scholar 

  22. Strichartz, R.S.: Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87(1), 51–148 (1989), Corrigendum , 109(2), 457–460 (1992)

  23. Strichartz, R.S.: Fractals in the large. Can. J. Math. 50(3), 638–657 (1998)

    Article  MathSciNet  Google Scholar 

  24. Strichartz, R.S.: Fractafolds based on the Sierpiński gasket and their spectra. Trans. Am. Math. Soc. 355, 4019–4043 (2003)

    Article  Google Scholar 

  25. Strichartz, R.S.: Laplacians on fractals with spectral gaps have nicer Fourier series. Math. Res. Lett. 12(2–3), 269–274 (2005)

    Article  MathSciNet  Google Scholar 

  26. Strichartz, R.S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton, NJ (2006)

    Book  Google Scholar 

  27. Strichartz, R.S.: A fractal quantum mechanical model with Coulomb potential. Commun. Pure Appl. Anal. 8(2), 743–755 (2009)

    Article  MathSciNet  Google Scholar 

  28. Strichartz, R.S., Teplyaev, A.: Spectral analysis on infinite Sierpiñski fractalfolds. J. Anal. Math. 116, 255–297 (2012)

    Article  MathSciNet  Google Scholar 

  29. Teplyaev, A.: Spectral analysis on infinite Sierpiński gaskets. J. Funct. Anal. 159, 537–667 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Huang.

Additional information

Communicated by Dorin Dutkay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Qiu: The research of Qiu was supported by the NSFC Grant 12071213.

Appendix

Appendix

In this appendix, we construct the 4-eigenfunctions on \({\widetilde{\mathcal {SG}}}\). Note that this induces a class of eigenvalues \(\Sigma _4=\bigcup _{m=0}^\infty R^{\circ -m}\{4\}\).

We introduce the following orthogonal matrices

$$\begin{aligned} A_1= \begin{pmatrix} 1&{}0&{}0\\ 0&{}0&{}-1\\ 0&{}-1&{}0 \end{pmatrix},\quad A_2= \begin{pmatrix} 0&{}0&{}-1\\ 0&{}1&{}0\\ -1&{}0&{}0 \end{pmatrix}, \quad A_3= \begin{pmatrix} 0&{}-1&{}0\\ -1&{}0&{}0\\ 0&{}0&{}1 \end{pmatrix}. \end{aligned}$$
(4.1)

Recall that if we fix an infinite word \(\omega =\omega _1\omega _2\ldots \), then there is a Sierpinski lattice defined by \({\widetilde{\mathcal {SG}}}=\bigcup _{m=0}^\infty F_{\omega _1}^{-1}F^{-1}_{\omega _2}\ldots F^{-1}_{\omega _m} V_m\). For convenience, we write

$$\begin{aligned} q_i^{(-m)}=F_{\omega _1}^{-1}F^{-1}_{\omega _2}\ldots F^{-1}_{\omega _m}\left( q_i\right) ,\quad i=0,1,2, \end{aligned}$$

and write

$$\begin{aligned} q_{li}^{(-m)}=F_{\omega _1}^{-1}F^{-1}_{\omega _2}\ldots F^{-1}_{\omega _m}\left( F_lq_i\right) ,\quad l\in W_m=\{0,1,2\}^m. \end{aligned}$$

Clearly \(q_i=q_{\omega _m\omega _{m-1}\ldots \omega _1 i}^{(-m)}\).

Proposition 4.1

  1. (a).

    If \({\widetilde{\mathcal {SG}}}\) has no boundary, then there is a three dimensional \(\ell ^\infty \)-eigenspace of \(\Delta \) corresponding to 4.

  2. (b).

    If \({\widetilde{\mathcal {SG}}}\) has a boundary point, then there is a two dimensional \(\ell ^\infty \)-eigenspace of \(\Delta \) corresponding to 4.

Fig. 8
figure 8

An illustration for extending f to be a 4-eigenfunction.(We take \(\omega _1=2,\omega _2=1\) as shown in the left picture.)

Proof

(a). Let \(f(q_0)=a,f(q_1)=b,f(q_2)=c\), where abc are arbitrary real number. Define

$$\begin{aligned} \begin{pmatrix} f\left( q^{(-m)}_0\right) \\ f\left( q^{(-m)}_1\right) \\ f\left( q^{(-m)}_2\right) \end{pmatrix}= A^{-1}_{\omega _{m}}\ldots A^{-1}_{\omega _{2}}A^{-1}_{\omega _1}\begin{pmatrix} f\left( q_0\right) \\ f\left( q_1\right) \\ f\left( q_2\right) \end{pmatrix}, \end{aligned}$$
(4.2)

and

$$\begin{aligned} \begin{pmatrix} f\left( q^{(-m)}_{l0}\right) \\ f\left( q^{(-m)}_{l1}\right) \\ f\left( q^{(-m)}_{l2}\right) \end{pmatrix}= A_{l_1}A_{l_2}\ldots A_{l_m}\begin{pmatrix} f\left( q^{(-m)}_0\right) \\ f\left( q^{(-m)}_1\right) \\ f\left( q^{(-m)}_2\right) \end{pmatrix},\quad \forall l\in W_m. \end{aligned}$$
(4.3)

See Fig. 8 for an example of the extension of f. One can easily check that f is a 4-eigenfunction of \(\Delta \) on \({\widetilde{\mathcal {SG}}}\) and f is bounded. By the above construction, we get a three dimensional eigenspace to 4.

On the other hand, noticing that 4 is not a forbidden eigenvalue, a 4-eigenfunction f is uniquely determined by \(f|_{V_0}\).

(b). The proof of (b) is essentially the same. The eigenspace is 2 dimensional as a consequence of the eigenvalue equation at the boundary point. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Huang, Y., Qiu, H. et al. Spectral Analysis Beyond \(\ell ^2\) on Sierpinski Lattices. J Fourier Anal Appl 27, 55 (2021). https://doi.org/10.1007/s00041-021-09853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09853-y

Keywords

Mathematics Subject Classification

Navigation