Skip to main content
Log in

Attraction of dung beetles to herbivore dung and synthetic compounds in a comparative field study

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Dung beetles use a variety of vertebrate dung to provision their offspring. To locate these resources, dung beetles use volatile substances emitted from dung as cues. Although it has been shown in laboratory tests that dung beetles are able to discriminate between different dung types using dung volatiles as kairomones, the attraction of particular dung volatiles and their potential role in resource partitioning of dung types have never been tested in field experiments. For the present study, we conducted field experiments in Austria and two regions in Argentina using pitfall traps baited with either herbivore dung types or synthetic compounds of the dung bouquet (butyric acid, 2-butanone, skatole, indole, and blends of these compounds) to investigate which components or simple mixtures are cues for several taxa of dung beetles. Additionally, we analyzed the degree of specialization of dung beetle species and communities on particular scent types and herbivore dung. Our results show that butyric acid in particular is an important volatile cue for dung beetles. Dung beetles show a preference for some scent types, but turned out to be generalists. This finding is in congruence with the assumption that organisms living from ephemeral resources should rather be generalists instead of specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann A, de Lacy Costello B, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T (2014) The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 8:034001

    Article  PubMed  Google Scholar 

  • Baraldi R, Rapparini F, Rossi F, Latella A, Ciccioli P (1999) Volatile organic compound emission from flowers of the most occurring and economically important species of fruit trees. Phys Chem Earth 24:729–732

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300

    Google Scholar 

  • Bischoff M, Raguso RA, Jürgens A, Campbell DR (2015) Context-dependent reproductive isolation mediated by floral scent and color. Evolution 69:1–13

    Article  PubMed  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol 17:341–346

    Article  PubMed  Google Scholar 

  • Burger BV, Petersen WGB, Weber WG, Munro ZM (2002) Semiochemicals of the Scarabaeinae. VII: identification and synthesis of EAD-active constituents of abdominal sex attracting secretion of the male dung beetle, Kheper subaeneus. J Chem Ecol 28:2527–2539

    Article  CAS  PubMed  Google Scholar 

  • Butts CT (2013) sna: Tools for Social Network Analysis. http://CRAN.R-project.org/package=sna. R package version 2.3–1

  • Carpaneto GM, Mazziotta A, Pittino R, Luiselli L (2011) Exploring co-extinction correlates: the effects of habitat, biogeography and anthropogenic factors on ground squirrels-dung beetles associations. Biodivers Conserv 20:3059–3076

    Article  Google Scholar 

  • Dangles O, Carpio C, Woodward G (2012) Size-dependent species removal impairs ecosystem functioning in a large-scale tropical field experiment. Ecology 93:2615–2625

    Article  PubMed  Google Scholar 

  • Davis EE (1988) Structure-response relationship of the lactic acid- excited neurons in the antennal grooved-peg sensilla of the mosquito Aedes aegypti. J Insect Physiol 34:443–449

    Article  CAS  Google Scholar 

  • Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  • Dormont L, Epinat G, Lumaret JP (2004) Trophic preferences mediated by olfactory cues in dung beetles colonizing cattle and horse dung. Environ Entomol 33:370–377

    Article  Google Scholar 

  • Dormont L, Rapior S, McKey D, Lumaret JP (2007) Influence of dung volatiles on the process of resource selection by coprophagous beetles. Chemoecology 17:23–30

    Article  CAS  Google Scholar 

  • Dormont L, Jay-Robert P, Bessière JM, Rapior S, Lumaret JP (2010) Innate olfactory preferences in dung beetles. J Exp Biol 213:3177–3186

    Article  CAS  PubMed  Google Scholar 

  • Dormont L, Bessière J-M, Cohuet A (2013) Human skin volatiles: a review. J Chem Ecol 39:569–578

    Article  CAS  PubMed  Google Scholar 

  • Errouissi F, Jay-Robert P, Lumaret JP, Piau O (2004) Composition and structure of dung beetle (Coleoptera: Aphodiinae, Geotrupidae, Scarabaeidae) assemblages in mountain grasslands of the Southern Alps. Ann Entomol Soc Am 97:701–709

    Article  Google Scholar 

  • Estrada A, Halffter G, Coates-Estrada R, Meritt DA Jr (1993) Dung beetles attracted to mammalian herbivore (Alouatta palliate) and omnivore (Nasua narica) dung in the tropical rain forest of Los Tuxtlas, Mexico. J Trop Ecol 9:45–54

    Article  Google Scholar 

  • Finn JA, Giller PS (2000) Patch size and colonisation patterns: an experimental analysis using north temperate coprophagous dung beetles. Ecography 23:301–314

    Article  Google Scholar 

  • Finn JA, Giller PS (2002) Experimental investigations of colonisation by north temperate dung beetles of different types of domestic herbivore dung. Appl Soil Ecol 20:1–13

    Article  Google Scholar 

  • Galante E, Cartagena MC (1999) Comparison of Mediterranean dung beetles (Coleoptera: Scarabaeoidea) in cattle and rabbit dung. Environ Entomol 28:420–424

    Article  Google Scholar 

  • Gill BD (1991) Dung beetles in tropical American forests. In: Hanski I, Cambefort Y (eds) Dung Beetle Ecology. Princeton University Press, Princeton, pp 211–229

    Google Scholar 

  • Hanski I (1987) Nutritional ecology of dung- and carrion-feeding. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, London, pp 837–884

    Google Scholar 

  • Hanski I (1991) The dung insect community. In: Hanski I, Cambefort Y (eds) Dung beetle ecology. Princeton University Press, Princeton, pp 5–21

    Google Scholar 

  • Hanski I, Cambefort Y (1991) Dung beetle ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Hassan FAM, Abd El-Gawad MAM, Enab AK (2013) Flavour compounds in cheese (review). Res Prec Instr Mach 2:15–29

    Google Scholar 

  • Inouchi J, Shibuyo T, Hatanaka T (1988) Food odor responses of single antennal olfactory cells in the Japanese dung beetle, Geotrupes auratus (Coleoptera: Geotrupidae). Appl Entomol Zool 23:167–174

    Google Scholar 

  • Jeanbourquin P, Guerin PM (2007) Chemostimuli implicated in selection of oviposition substrates by the stable fly Stomoxys calcitrans. Med Vet Entomol 21:209–216

    Article  Google Scholar 

  • Kimura R (2001) Volatile substances in feces, urine and urine-marked feces of feral horses. Can J Anim Sci 81:411–420

    Article  CAS  Google Scholar 

  • Kline DL, Mann MO (1998) Evaluation of butanone, carbon dioxide, and 1-octen-3-ol as attractants for mosquitoes associated with north central Florida bay and cypress swamps. J Am Mosq Contr Assoc 14:289–297

    CAS  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Krell FT, Schmitt T (in press) The fecal volatilome—a compilation of the odorous components of vertebrate feces. Denver Museum of Nature & Science Reports

  • Larsen HL, Lopera A, Forsyth A (2006) Extreme trophic and habitat specialization by Peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopts Bull 60:315–324

    Article  Google Scholar 

  • Lumaret JP, Kirk AA (1987) Ecology of dung beetles in the French Mediterranean region (Coleoptera, Scarabaeinae). Acta Zool Mexicana 24:1–55

    Google Scholar 

  • Martín-Piera F, Lobo JM (1996) A comparative discussion of trophic preferences in dung beetle communities. Miscel.lania Zooloqica 19:13–31

    Google Scholar 

  • Mottram HR, Flament IA (1996) The volatile constituents of the flowers of the ‘silk tree’, Albizzia julibrissin. Special Publ Roy Soc Chem 197:74–77

    CAS  Google Scholar 

  • Ohta Y, Kuwada Y (1988) Rapid deodorization of cattle feces by microorganisms. Biol Waste 24:227–240

    Article  CAS  Google Scholar 

  • Ojeda RA, Campos CM, Gonnet JM, Borghi CE, Roig VG (1998) The MaB Reserve of Ñacuñán, Argentina: its role in understanding the Monte Desert biome. J Arid Environ 39:299–313

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: Community Ecology Package. R package version 2.0–4. http://CRAN.Rproject.org/package=https://cran.r-project.org/web/packages/vegan/

  • Ômura H, Honda K, Hayashi N (2000) Identification of feeding attractants in oak sap for adults of two nymphalid butterflies, Kaniska canace and Vanessa indica. Physiol Entomol 25:281–287

    Article  Google Scholar 

  • Pfrommer A, Krell FT (2004) Who steals the eggs? Coprophanaeus telamon (Erichson) buries decomposing eggs in Western Amazonian rain forest (Coleoptera: Scarabaeidae). Coleopts Bull 58:21–27

    Article  Google Scholar 

  • Philips TK (2011) The evolutionary history and diversification of dung beetles. In: Simmons LW, Ridsdill-Smith TJ (eds) Ecology and evolution of dung beetles. Blackwell Publishing, Chichester, pp 21–46

    Chapter  Google Scholar 

  • Robertson GW, Griffiths DW, Smith WM, Butcher RD (1993) The application of thermal desorption-gas chromatography-mass spectrometry to the analyses of flower volatiles from five varieties of oilseed rape (Brassica napus spp. oleifera). Phytochem Analysis 4:152–157

    Article  CAS  Google Scholar 

  • Rubio G, Minoli I, Piacentini L (2007) Patrones de abundancia de cinco especies de arañas lobo (Araneae: Lycosidae) en dos ambientes del Parque Nacional Mburucuyá, Corrientes, Argentina. Brenesia 67:59–67

    Google Scholar 

  • Simpson GL (2012) permute: Functions for generating restricted permutations of data. R package version 0.7–0. https://CRAN.R-project.org/package=permute

  • Smallegange RC, Qiu YT, Bukovinszkiné-Kiss G, Van Loon JJA, Takken W (2009) The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto. J Chem Ecol 35:933–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipple SD, Hoback WW (2012) A comparison of dung beetle (Coleoptera: Scarabaeidae) attraction to native and exotic mammal dung. Environ Entomol 41:238–244

    Article  PubMed  Google Scholar 

  • Wirta H, Viljanen H, Orsini L, Montreuil O, Hanski I (2010) Three parallel radiations of Canthonini dung beetles in Madagascar. Mol Phylogenet Evol 57:710–727

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmitt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wurmitzer, C., Blüthgen, N., Krell, FT. et al. Attraction of dung beetles to herbivore dung and synthetic compounds in a comparative field study. Chemoecology 27, 75–84 (2017). https://doi.org/10.1007/s00049-017-0232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-017-0232-6

Keywords

Navigation