Skip to main content

Advertisement

Log in

Toxicity and outcome of pelvic IMRT for node-positive prostate cancer

Nebenwirkungen und Ergebnisse einer Becken-IMRT nodal-positiver Prostatakarzinome

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

This study reports on the treatment techniques, toxicity, and outcome of pelvic intensity-modulated radiotherapy (IMRT) for lymph node-positive prostate cancer (LNPPC, T1-4, c/pN1 cM0).

Patients and methods

Pelvic IMRT to 45–50.4 Gy was applied in 39 cases either after previous surgery of involved lymph nodes (n = 18) or with a radiation boost to suspicious nodes (n = 21) with doses of 60–70 Gy, usually combined with androgen deprivation (n = 37). The prostate and seminal vesicles received 70–74 Gy. In cases of previous prostatectomy, prostatic fossa and remnants of seminal vesicles were given 66–70 Gy. Treatment-related acute and late toxicity was graded according to the RTOG criteria.

Results

Acute radiation-related toxicity higher than  grade 2 occurred in 2 patients (with the need for urinary catheter/subileus related to adhesions after surgery). Late toxicity was mild (grade 1–2) after a median follow-up of 70 months. Over 50% of the patients reported no late morbidity (grade 0). PSA control and cancer-specific survival reached 67% and 97% at over  5 years.

Conclusion

Pelvic IMRT after the removal of affected nodes or with a radiation boost to clinically positive nodes led to an acceptable late toxicity (no grade 3/4 events), thus justifying further evaluation of this approach in a larger cohort.

Zusammenfassung

Hintergrund

Diese Studie beschreibt Behandlungstechniken, Nebenwirkungen und Ergebnisse einer intensitätsmodulierten Bestrahlung (IMRT) des Beckens bei lymphonodal-positiven Prostatakarzinomen (LNPPC, T1–4, c/pN1 cM0).

Material und Methoden

Eine Becken-IMRT bis 45–50,4 Gy wurde bei 39 Patienten entweder nach chirurgischer Entfernung histologisch befallener Lymphknoten (n = 18) oder mit einem IMRT-Boost auf klinisch befallene Lymphknoten (n = 21) bis 60–70 Gy durchgeführt und mit einer antihormonellen Langzeittherapie (n = 37) kombiniert. Prostata und Samenblasen erhielten 70–74 Gy, nach radikaler Prostatektomie wurde die Prostataloge ggf. mit residuellen Samenblasenanteilen bis 66–70 Gy bestrahlt. Akute und späte Nebenwirkungen wurden nach den Kriterien der Radiation Therapy Oncology Group (RTOG) erfasst.

Ergebnisse

Akutnebenwirkungen ≥ Grad 2 traten bei 2 Patienten auf (Blasenkatheteranlage, Subileus aufgrund von postoperativen Adhäsionen). Die Spätnebenwirkungen nach einer medianen Nachsorgedauer von 70 Monaten waren mild (Grad 1–2). Über die Hälfte der Patienten berichtete über keine postradiogenen Spätnebenwirkungen (Grad 0). Die biochemische Kontrolle und das krebsspezifische Überleben erreichten Werte von 67% und 97% nach > 5 Jahren.

Schlussfolgerung

Die Becken-IMRT nach Entfernung befallener Lymphknoten oder mit Boost klinisch befallener Lymphknoten war mit akzeptablen Spätnebenwirkungen (kein Grad 3 oder 4) verbunden, sodass eine Evaluation dieses Vorgehens in einem größeren Kollektiv gerechtfertigt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. (NCCN) NCCN (2011) Prostate cancer. NCCN Clinical Practice Guidelines in Oncology. Vol Version 4.2011: http://www.nccn.org. MS-18

  2. Aizer AA, Yu JB, McKeon AM et al (2009) Whole pelvic radiotherapy versus prostate only radiotherapy in the management of locally advanced or aggressive prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 75:1344–1349

    Article  PubMed  Google Scholar 

  3. Alongi F, Fiorino C, Cozzarini C et al (2009) IMRT significantly reduces acute toxicity of whole-pelvis irradiation in patients treated with post-operative adjuvant or salvage radiotherapy after radical prostatectomy. Radiother Oncol 93:207–212

    Article  PubMed  Google Scholar 

  4. Arcangeli S, Saracino B, Petrongari MG et al (2007) Analysis of toxicity in patients with high risk prostate cancer treated with intensity-modulated pelvic radiation therapy and simultaneous integrated dose escalation to prostate area. Radiother Oncol 84:148–155

    Article  PubMed  Google Scholar 

  5. Ashman JB, Zelefsky MJ, Hunt MS et al (2005) Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 63:765–771

    Article  PubMed  Google Scholar 

  6. Bayley A, Rosewall T, Craig T et al (2010) Clinical application of high-dose, image-guided intensity-modulated radiotherapy in high-risk prostate cancer. Int J Radiat Oncol Biol Phys 77:477–483

    Article  PubMed  Google Scholar 

  7. Bayouth JE, Pena J, Culp L et al (2008) Feasibility of IMRT to cover pelvic nodes while escalating the dose to the prostate gland: dosimetric data on 35 consecutive patients. Med Dosim 33:180–190

    Article  PubMed  Google Scholar 

  8. Bolla M, Collette L, Blank L et al (2002) Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360:103–106

    Article  PubMed  CAS  Google Scholar 

  9. Bolla M, Descotes JL, Artignan X et al (2007) Adjuvant treatment to radiation: combined hormone therapy and external radiotherapy for locally advanced prostate cancer. BJU Int 100(Suppl 2):44–47

    Article  PubMed  CAS  Google Scholar 

  10. Briganti A, Karnes RJ, Da Pozzo LF et al (2011) Combination of adjuvant hormonal and radiation therapy significantly prolongs survival of patients with pT2-4 pN+ prostate cancer: results of a matched analysis. Eur Urol 59:832–840

    Article  PubMed  CAS  Google Scholar 

  11. Chung HT, Xia P, Chan LW et al (2009) Does image-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk prostate cancer? Comparison between IG-IMRT and IMRT. Int J Radiat Oncol Biol Phys 73:53–60

    Article  PubMed  Google Scholar 

  12. Cozzarini C, Fiorino C, Di Muzio N et al (2007) Significant reduction of acute toxicity following pelvic irradiation with helical tomotherapy in patients with localized prostate cancer. Radiother Oncol 84:164–170

    Article  PubMed  Google Scholar 

  13. Da Pozzo LF, Cozzarini C, Briganti A et al (2009) Long-term follow-up of patients with prostate cancer and nodal metastases treated by pelvic lymphadenectomy and radical prostatectomy: the positive impact of adjuvant radiotherapy. Eur Urol 55:1003–1011

    Article  Google Scholar 

  14. Deville C, Both S, Hwang WT et al (2011) Clinical toxicities and dosimetric parameters after whole-pelvis versus prostate-only intensity-modulated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 78:763–772

    Article  Google Scholar 

  15. Deville C, Vapiwala N, Hwang WT et al (2011) Comparative toxicity and dosimetric profile of whole-pelvis versus prostate bed-only intensity-modulated radiation therapy after prostatectomy. Int J Radiat Oncol Biol Phys (Epub ahead of print)

  16. Engels B, Soete G, Tournel K et al (2009) Helical tomotherapy with simultaneous integrated boost for high-risk and lymph node-positive prostate cancer: early report on acute and late toxicity. Technol Cancer Res Treat 8:353–359

    PubMed  Google Scholar 

  17. Eschmann SM, Pfannenberg AC, Rieger A et al (2007) Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin 46:161–168

    PubMed  CAS  Google Scholar 

  18. Fiorino C, Alongi F, Perna L et al (2009) Dose-volume relationships for acute bowel toxicity in patients treated with pelvic nodal irradiation for prostate cancer. Int J Radiat Oncol Biol Phys 75:29–35

    Article  PubMed  Google Scholar 

  19. Fonteyne V, De Gersem W, De Neve W et al (2009) Hypofractionated intensity-modulated arc therapy for lymph node metastasized prostate cancer. Int J Radiat Oncol Biol Phys 75:1013–1020

    Article  PubMed  Google Scholar 

  20. Ganswindt U, Paulsen F, Corvin S et al (2007) Optimized coverage of high-risk adjuvant lymph node areas in prostate cancer using a sentinel node-based, intensity-modulated radiation therapy technique. Int J Radiat Oncol Biol Phys 67:347–355

    Article  PubMed  Google Scholar 

  21. Ganswindt U, Schilling D, Muller AC et al (2011) Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas. Int J Radiat Oncol Biol Phys 79:1364–1372

    Article  PubMed  Google Scholar 

  22. Garcia JR, Soler M, Blanch MA et al (2009) PET/CT with (11)C-choline and (18)F-FDG in patients with elevated PSA after radical treatment of a prostate cancer. Rev Esp Med Nucl 28:95–100

    Article  PubMed  CAS  Google Scholar 

  23. Geier M, Astner ST, Duma MN et al (2012) Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy. Strahlenther Onkol 188:410–416

    Article  PubMed  CAS  Google Scholar 

  24. Goldner G, Potter R (2008) Radiotherapy in lymph node-positive prostate cancer patients—a potential cure? Single institutional experience regarding outcome and side effects. Front Radiat Ther Oncol 41:68–76

    Article  PubMed  Google Scholar 

  25. Goldner G, Potter R, Kranz A et al (2011) Healing of late endoscopic changes in the rectum between 12 and 65 months after external beam radiotherapy. Strahlenther Onkol 187:202–205

    Article  PubMed  Google Scholar 

  26. Guerrero Urbano T, Khoo V, Staffurth J et al (2010) Intensity-modulated radiotherapy allows escalation of the radiation dose to the pelvic lymph nodes in patients with locally advanced prostate cancer: preliminary results of a phase I dose escalation study. Clin Oncol (R Coll Radiol) 22:236–244

    Google Scholar 

  27. Heidenreich A, Varga Z, Von Knobloch R (2002) Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol 167:1681–1686

    Article  PubMed  Google Scholar 

  28. Hong TS, Tome WA, Jaradat H et al (2006) Pelvic nodal dose escalation with prostate hypofractionation using conformal avoidance defined (H-CAD) intensity modulated radiation therapy. Acta Oncol 45:717–727

    Article  PubMed  Google Scholar 

  29. John SS, Zietman AL, Shipley WU et al (2008) Newer imaging modalities to assist with target localization in the radiation treatment of prostate cancer and possible lymph node metastases. Int J Radiat Oncol Biol Phys 71:43–47

    Article  Google Scholar 

  30. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  31. Leitlinienprogramm Onkologie der AWMW DKeVu, e.V DK (2011) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. German S3-Guideline 2011;Version 2.0-1. Aktualisierung 1–236

  32. McCammon R, Rusthoven KE, Kavanagh B et al (2009) Toxicity assessment of pelvic intensity-modulated radiotherapy with hypofractionated simultaneous integrated boost to prostate for intermediate- and high-risk prostate cancer. Int J Radiat Oncol Biol Phys 75:413–420

    Article  PubMed  Google Scholar 

  33. Meijer HJ, Debats OA, Kunze-Busch M et al (2012) Magnetic resonance lymphography-guided selective high-dose lymph node irradiation in prostate cancer. Int J Radiat Oncol Biol Phys 82:175–183

    Article  PubMed  Google Scholar 

  34. Messing EM, Manola J, Sarosdy M et al (1999) Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N Engl J Med 341:1781–1788

    Article  PubMed  CAS  Google Scholar 

  35. Messing EM, Manola J, Yao J et al (2006) Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol 7:472–479

    Article  PubMed  CAS  Google Scholar 

  36. Muren LP, Wasbo E, Helle SI et al (2008) Intensity-modulated radiotherapy of pelvic lymph nodes in locally advanced prostate cancer: planning procedures and early experiences. Int J Radiat Oncol Biol Phys 71:1034–1041

    Article  PubMed  Google Scholar 

  37. Perna L, Alongi F, Fiorino C et al (2010) Predictors of acute bowel toxicity in patients treated with IMRT whole pelvis irradiation after prostatectomy. Radiother Oncol 97:71–75

    Article  PubMed  Google Scholar 

  38. Pervez N, Small C, MacKenzie M et al (2010) Acute toxicity in high-risk prostate cancer patients treated with androgen suppression and hypofractionated intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 76:57–64

    Article  PubMed  CAS  Google Scholar 

  39. Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187:479–484

    Article  PubMed  Google Scholar 

  40. Sanguineti G, Endres EJ, Parker BC et al (2008) Acute toxicity of whole-pelvis IMRT in 87 patients with localized prostate cancer. Acta Oncol 47:301–310

    Article  PubMed  Google Scholar 

  41. Schilling D, Schlemmer HP, Wagner PH et al (2008) Histological verification of 11C-choline-positron emission/computed tomography-positive lymph nodes in patients with biochemical failure after treatment for localized prostate cancer. BJU Int 102:446–451

    Article  PubMed  Google Scholar 

  42. Schumacher MC, Burkhard FC, Thalmann GN et al (2008) Good outcome for patients with few lymph node metastases after radical retropubic prostatectomy. Eur Urol 54:344–352

    Article  PubMed  Google Scholar 

  43. Sheets N, Goldin GH, Meyer AM et al (2011) Comparative long-term morbidity of intensity modulated vs. conformal radiation therapy (RT) for prostate cancer: a SEER-medicare analysis. Int J Radiat Oncol Biol Phys 78:43

    Article  Google Scholar 

  44. Su AW, Jani AB (2007) Chronic genitourinary and gastrointestinal toxicity of prostate cancer patients undergoing pelvic radiotherapy with intensity-modulated versus 4-field technique. Am J Clin Oncol 30:215–219

    Article  PubMed  Google Scholar 

  45. Swanson GP, Thompson IM, Basler J (2006) Treatment options in lymph node-positive prostate cancer. Cancer 106:2531–2539

    Article  PubMed  Google Scholar 

  46. Tward JD, Shrieve CD (2010) Radiotherapy is correlated with superior survival in clinically node positive prostate cancer. Int J Radiat Oncol Biol Phys 78:31

    Article  Google Scholar 

  47. Weckermann D, Goppelt M, Dorn R et al (2006) Incidence of positive pelvic lymph nodes in patients with prostate cancer, a prostate-specific antigen (PSA) level of < or = 10 ng/mL and biopsy Gleason score of < or = 6, and their influence on PSA progression-free survival after radical prostatectomy. BJU Int 97:1173–1178

    Article  PubMed  Google Scholar 

  48. Weidner AM, Lin EN van, Dinter DJ et al (2011) Ferumoxtran-10 MR lymphography for target definition and follow-up in a patient undergoing image-guided, dose-escalated radiotherapy of lymph nodes upon PSA relapse. Strahlenther Onkol 187:206–212

    Article  PubMed  Google Scholar 

  49. Wurschmidt F, Petersen C, Wahl A et al (2011) [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol 6:44–51

    Article  PubMed  Google Scholar 

  50. Zurlo A, Collette L, Tienhoven G van et al (2002) Acute toxicity of conventional radiation therapy for high-risk prostate cancer in EORTC trial 22863. Eur Urol 42:125–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Silke Theden in the data management, and the assistance of Bettina Frey in generating treatment plans.

Conflict of interest

On behalf of all authors, the corresponding author states that are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-C. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, AC., Lütjens, J., Alber, M. et al. Toxicity and outcome of pelvic IMRT for node-positive prostate cancer. Strahlenther Onkol 188, 982–989 (2012). https://doi.org/10.1007/s00066-012-0169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0169-1

Keywords

Schüsselwörter

Navigation