Skip to main content
Log in

Prostate cancer treated with image-guided helical TomoTherapy® and image-guided LINAC-IMRT

Correlation between high-dose bladder volume, margin reduction, and genitourinary toxicity

Behandlung des Prostatakarzinoms mit bildgeführter helikaler Tomotherapie und bildgeführter LINAC-IMRT

Korrelation zwischen Harnblasenhochdosisvolumen, Reduktion des Sicherheitsabstands und urogenitaler Toxizität

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

We compared different image-guidance (IG) strategies for prostate cancer with high-precision IG intensity-modulated radiation therapy (IMRT) using TomoTherapy® (Accuray Inc., Madison, WI, USA) and linear accelerator (LINAC)-IMRT and their impact on planning target volume (PTV) margin reduction. Follow-up data showed reduced bladder toxicity in TomoTherapy patients compared to LINAC-IMRT. The purpose of this study was to quantify whether the treatment delivery technique and decreased margins affect reductions in bladder toxicity.

Patients and methods

Setup corrections from 30 patients treated with helical TomoTherapy and 30 treated with a LINAC were analyzed. These data were used to simulate three IG protocols based on setup error correction and a limited number of imaging sessions. For all patients, gastrointestinal (GI) and genitourinary (GU) toxicity was documented and correlated with the treatment delivery technique.

Results

For fiducial marker (FM)-based RT, a margin reduction of up to 3.1, 3.0, and 4.8 mm in the left–right (LR), superior–inferior (SI), and anterior-posterior (AP) directions, respectively, could be achieved with calculation of a setup correction from the first three fractions and IG every second day. Although the bladder volume was treated with mean doses of 35 Gy in the TomoTherapy group vs. 22 Gy in the LINAC group, we observed less GU toxicity after TomoTherapy.

Conclusion

Intraprostate FMs allow for small safety margins, help decrease imaging frequency after setup correction, and minimize the dose to bladder and rectum, resulting in lower GU toxicity. In addition, IMRT delivered with TomoTherapy helps to avoid hotspots in the bladder neck, a critical anatomic structure associated with post-RT urinary toxicity.

Zusammenfassung

Hintergrund

Wir haben im Rahmen der Prostatakarzinombehandlung verschiedene bildgeführte (IG) Strategien der hochpräzisen intensitätsmodulierten Radiotherapie (IMRT) unter Einsatz der Tomotherapie (TomoTherapy®, Accuray Inc., Madison, Wisconsin, USA) und der Linearbeschleuniger(LINAC)-IMRT sowie deren Einfluss auf die Margingröße verglichen. Wie Nachsorgeuntersuchungen zeigten, war die Harnblasentoxizität bei Patienten mit Tomotherapie im Vergleich zur LINAC-IMRT geringer. In der vorliegenden Studie sollte quantifiziert werden, ob das Bestrahlungsverfahren und reduzierte Sicherheitssäume Einfluss auf die Verringerung der Blasentoxizität haben.

Patienten und Methoden

Es erfolgte eine Analyse der Lagerungskorrekturen von 30 Patienten mit helikaler Tomotherapie und weiteren 30 Patienten, die mit einem LINAC behandelt wurden. Mithilfe dieser Daten wurden drei IG-Protokolle simuliert, basierend auf den Korrekturen von Lagerungsfehlern und auf einer limitierten Zahl bildgeführter Bestrahlungen. Bei allen Patienten wurde die gastrointestinale (GI) und urogenitale (GU) Toxizität dokumentiert und mit dem Bestrahlungsverfahren in Beziehung gesetzt.

Ergebnisse

Bei Anwendung einer Radiotherapie mit Goldmarkern konnte durch Berechnung einer Lagerungskorrektur aus den ersten 3 Fraktionen und einer IG-Untersuchung an jedem zweiten Tag eine Marginreduktion von bis zu 3,1, 3,0 und 4,8 mm in Links-rechts-, superior-inferiorer bzw. anterior-posteriorer Richtung, bei gleichzeitiger Reduzierung der IG-Dosis erreicht werden. Obwohl das Blasenvolumen in der Tomotherapiegruppe mit mittleren Dosen von 35 Gy behandelt wurde, während die LINAC-Gruppe 22 Gy erhielt, war eine geringere urogenitale Toxizität nach Tomotherapie zu verzeichnen.

Schlussfolgerung

Goldmarkerbasierte IGRT der Prostata ermöglicht kleinere Sicherheitssäume. Sie helfen, die Häufigkeit bildgeführter Bestrahlungen mithilfe geeignter IG-Protkolle zu verringern und die Strahlendosis in Blase und Rektum zu minimieren. Dadurch sinkt die urogenitale Toxizität. Darüber hinaus lassen sich mit IMRT unter Einsatz der Tomotherapie „Hotspots“ am Blasenhals vermeiden, einer kritischen anatomischen Struktur, die im Zusammenhang mit der Harnwegstoxizität nach Radiotherapie steht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cahlon O, Hunt M, Zelefsky MJ (2008) Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol 18:48–57

    Article  PubMed  Google Scholar 

  2. Spratt DE, Pei X, Yamada J, Kollmeier MA, Cox B, Zelefsky MJ (2013) Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 85:686–692

    Article  PubMed  Google Scholar 

  3. Guckenberger M, Lawrenz I, Flentje M (2014) Moderately hypofractionated radiotherapy for localized prostate cancer: long-term outcome using IMRT and volumetric IGRT. Strahlenther Onkol 190:48–53

    Article  CAS  PubMed  Google Scholar 

  4. Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, Carver B, Coleman J, Lovelock M, Hunt M (2012) Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 84:125–129

    Article  PubMed  Google Scholar 

  5. Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, Zafar Jafri S, Vicini FA, Matter RC, Brabbins DS, Martinez AA (2005) Prostate gland motion assessed with cine magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417

    Article  PubMed  Google Scholar 

  6. Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, Schiff P (2005) Image-guided radio-therapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 61(2):561–569

    Article  PubMed  Google Scholar 

  7. Korreman S, Rasch C, McNair H, Verellen D, Oelfke U, Maingon P, Mijnheer B, Khoo V (2010) The European Society of Therapeutic Radiology and Oncology –European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother Oncol 94:129–144

    Article  PubMed  Google Scholar 

  8. Tanyi JA, He T, Summers PA, Mburu RG, Kato CM, Rhodes SM, Hung AY, Fuss M (2010) Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. Int J Radiat Oncol Biol Phys 78:1579–1585

    Article  PubMed  Google Scholar 

  9. Dehnad H, Nederveen AJ, van der Heide UA, van Moorselaar RJ, Hofman P, Lagendijk JJ (2003) Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. Radiother Oncol 67:295–302

    Article  PubMed  Google Scholar 

  10. Langen KM, Zhang Y, Andrews RD, Hurley ME, Meeks SL, Poole DO (2005) Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. Int J Radiat Oncol Biol Phys 62:1517–1524

    Article  PubMed  Google Scholar 

  11. Kupelian PA, Willoughby TR, Meeks SL, Forbes A, Wagner T, Maach M, Langen KM (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296

    Article  PubMed  Google Scholar 

  12. Fortin I, Carrier JF, Beauchemin MC, Béliveau-Nadeau D, Delouya G, Taussky D (2014) Using fiducial markers in the prostate bed in postprostatectomy external beam radiation therapy improves accuracy over surgical clips. Strahlenther Onkol 190:467–471

    Article  CAS  PubMed  Google Scholar 

  13. Morin O, Gillis A, Descovich M, Chen J, Aubin M, Aubry JF, Chen H, Gottschalk AR, Xia P, Pouliot J (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34:1819–1827

    Article  PubMed  Google Scholar 

  14. Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL (2008) Patient dose from megavoltage computed tomography imaging. Int J Radiat Oncol Biol Phys 70:1579–1587

    Article  PubMed  Google Scholar 

  15. The Royal College of Radiologists (2008) On target: Ensuring geometric accuracy in radiotherapy. https://www.rcr.ac.uk/docs/oncology/pdf/BFCO%2808%295_On_target.pdf

  16. van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135

    Article  PubMed  Google Scholar 

  17. Mah D, Freedman G, Milestone B, Hanlon A, Palacio E, Richardson T, Movsas B, Mitra R, Horwitz E, Hanks GE (2002) Measurement of intrafractional prostate motion using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 54:568–5759

    Article  PubMed  Google Scholar 

  18. Aubry JF, Beaulieu L, Girouard LM, Aubin S, Tremblay D, Laverdière J, Vigneault E (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–3915

    Article  PubMed  Google Scholar 

  19. Britton KR, Takai Y, Mitsuya M, Nemoto K, Ogawa Y, Yamada S (2005) Evaluation of inter- and intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med 23:14–24

    PubMed  Google Scholar 

  20. Huang E, Dong L, Chandra A, Kuban DA, Rosen II, Evans A, Pollack A (2002) Intrafraction prostate motion during IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 53:261–268

    Article  PubMed  Google Scholar 

  21. Moiseenko V, Liu M, Kristensen S, Gelowitz G, Berthelet E (2007) Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study. J Applied Clin Med Phys 8:55–68

    Google Scholar 

  22. Nakamura N, Shikama N, Takahashi O, Ito M, Hashimoto M, Uematsu M, Hama Y, Sekiguchi K, Nakagawa K (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186:637–642

    Article  PubMed  Google Scholar 

  23. O’Doherty UM, McNair HA, Norman AR, Miles E, Hooper S, Davies M, Lincoln N, Balyckyi J, Childs P, Dearnaley DP, Huddart RA (2006) Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiother Oncol 79:335–340

    Article  PubMed  Google Scholar 

  24. Hynds S, McGarry CK, Mitchell DM, Early S, Shum L, Stewart DP, Harney JA, Cardwell CR, O’Sullivan JM (2011) Assessing the daily consistency of bladder filling using an ultrasonic Bladderscan device in men receiving radical conformal radiotherapy for prostate cancer. Br J Radiol 84:813–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295

    Article  PubMed  Google Scholar 

  26. Nederveen AJ, van der Heide UA, Dehnad H, van Moorselaar RJ, Hofman P, Lagendijk JJ (2002) Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 53:206–214

    Article  PubMed  Google Scholar 

  27. Alasti H, Petric MP, Catton CN, Warde PR (2001) Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 49:869–884

    Article  CAS  PubMed  Google Scholar 

  28. Althof VGM, Hoekstra CJ, te Loo HJ (1996) Variation in prostate position relative to adjacent bony anatomy. Int J Radiat Oncol Biol Phys 34:709–715

    Article  CAS  PubMed  Google Scholar 

  29. Rudat V, Schraube P, Oetzel D, Zierhut D, Flentje M, Wannenmacher M (1996) Combined error of patient positioning variability and prostate motion uncertainty in 3D conformal radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 35:1027–1034

    Article  CAS  PubMed  Google Scholar 

  30. Keyes M, Miller S, Moravan V, Pickles T, McKenzie M, Pai H, Liu M, Kwan W, Agranovich A, Spadinger I, Lapointe V, Halperin R, Morris WJ (2009) Predictive factors for acute and late urinary toxicity after permanent prostate brachytherapy: long-term outcome in 712 consecutive patients. Int J Radiat Oncol Biol Phys 73:1023–1032

    Article  PubMed  Google Scholar 

  31. Ghadjar P, Zelefsky MJ, Spratt DE, Munck af Rosenschöld P, Oh JH, Hunt M, Kollmeier M, Happersett L, Yorke E, Deasy JO, Jackson A (2014) Impact of dose to the bladder trigone on long-term urinary function after high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 88:339–344

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roeloffzen EM, Monninkhof EM, Battermann JJ, van Roermund JG, Moerland MA, van Vulpen M (2011) Acute urinary retention after I-125 prostate brachytherapy in relation to dose in different regions of the prostate. Int J Radiat Oncol Biol Phys 80:76–84

    Article  PubMed  Google Scholar 

  33. Hathout L, Folkert MR, Kollmeier MA, Yamada Y, Cohen GN, Zelefsky MJ (2014) Dose to the bladder neck is the most important predictor for acute and late toxicity after low-dose-rate prostate brachytherapy: implications for establishing new dose constraints for treatment planning. Int J Radiat Oncol Biol Phys 90:312–319

    Article  PubMed  Google Scholar 

  34. Heemsbergen WD, Al-Mamgani A, Witte MG, van Herk M, Pos FJ, Lebesque JV (2010) Urinary obstruction in prostate cancer patients from the Dutch trial (68 Gy vs. 78 Gy): relationships with local dose, acute effects, and baseline characteristics. Int J Radiat Oncol Biol Phys 78:19–25

    Article  PubMed  Google Scholar 

  35. Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomized trial. Lancet 353:267–272

    Article  CAS  PubMed  Google Scholar 

  36. Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

SD conceived the study; acquired, analyzed, and interpreted the data; reviewed the literature; and wrote the manuscript. MS was responsible for study design; involved in collection, interpretation, and statistical analysis of data; and assisted with drafting the manuscript. TGW was responsible for coordinating the study and treatment planning; he edited the manuscript and performed a critical revision of scientific content. HS critically reviewed the manuscript. SF helped revising the draft. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Drozdz.

Ethics declarations

Conflict of interest

S. Drozdz, M. Schwedas, H. Salz, S. Foller and T.G. Wendt state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdz, S., Schwedas, M., Salz, H. et al. Prostate cancer treated with image-guided helical TomoTherapy® and image-guided LINAC-IMRT. Strahlenther Onkol 192, 223–231 (2016). https://doi.org/10.1007/s00066-015-0935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0935-y

Keywords

Schlüsselwörter

Navigation