Skip to main content
Log in

Ventilatorassoziierte Pneumonie

Ventilator-associated pneumonia

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die ventilatorassoziierte Pneumonie (VAP) ist die häufigste nosokomiale Infektion in der Intensivmedizin und stellt einen unabhängigen Risikofaktor für die Letalität von Intensivpatienten dar. Für ihre Genese sind die durch die maschinelle Beatmung selbst hervorgerufenen mechanischen Schäden des Lungengewebes von geringerer Bedeutung, entscheidender ist demgegenüber die Art der Applikation der Beatmung. So bildet der Endotrachealtubus bei invasiver Beatmung eine Leitschiene für potenziell infektiöses Sekret aus dem Oropharynx, während die Atemwege im Rahmen der nicht-invasiven Beatmung besser vor dieser Mikroaspiration geschützt sind. Zur Prophylaxe der VAP sind deshalb prinzipiell alle Maßnahmen geeignet, die solche Mikroaspirationen verhindern oder die invasive Beatmungsdauer selbst verkürzen. Auch Vorkehrungen zur Keimreduktion im Oropharynx sind so möglicherweise hilfreich. Die Effektivität der Behandlung ist u. a. von einem möglichst frühen Therapiebeginn und damit einer schnellen Diagnose abhängig. In dieser Hinsicht ist die Kombination klinischer, radiologischer und mikrobiologischer Parameter sinnvoll. Bei den therapeutischen Überlegungen steht v. a. die rasche Antibiotikatherapie unter Berücksichtigung individueller Risikofaktoren und lokaler Resistenzen im Vordergrund.

Abstract

Ventilator-associated pneumonia (VAP) is the most common nosocomial infection in critical care medicine and has been shown to be an independent risk factor for mortality. However, ventilator induced lung injury itself is probably only a minor factor predisposing to VAP. In contrast, invasive ventilation using an endotracheal tube is obviously a more important measure. Thus, microaspiration of potentially infectious secretion from the oropharynx into the trachea along the tube has been suggested to be the most critical pathophysiological event in the process of VAP development. Accordingly, non-invasive ventilation provides a decreased risk of VAP. Therefore, all measures aimed at averting microaspiration or shorten the duration of mechanical ventilation are appropriate to prevent VAP. Moreover, oropharyngeal decontamination may be helpful by reducing bacterial colonisation. Effectiveness of therapy depends on early treatment and therefore requires early diagnosis. With this aim combined clinical, radiologic, and microbiological parameters should be taken into account. Adequate antimicrobial therapy in due consideration for individual risk factors and local antibiotic resistance is the most important therapeutic measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Adair CG, Gorman SP, Feron BM et al. (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25: 1072–1076

    Article  PubMed  CAS  Google Scholar 

  2. American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171: 388–416

    Article  Google Scholar 

  3. Andrews CP, Coalson JJ, Smith JD, Johanson WG (1981) Diagnosis of nosocomial bacterial pneumonia in acute, diffuse lung injury. Chest 80: 254–258

    Article  PubMed  CAS  Google Scholar 

  4. Bassi GL, Zanella A, Cressoni M et al. (2008) Following tracheal intubation, mucus flow is reversed in the semirecumbent position: possible role in the pathogenesis of ventilator-associated pneumonia. Crit Care Med 36: 518–525

    PubMed  Google Scholar 

  5. Bein T (2008) Lagerungstherapie zur Prophylaxe oder Therapie von pulmonalen Funktionsstörungen. S2e-Leitlinie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Anaesth Intensivmed 2: s1–s24

    Google Scholar 

  6. Bliziotis IA, Samonis G, Vardakas KZ et al. (2005) Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized controlled trials. Clin Infect Dis 41: 149–158

    Article  PubMed  CAS  Google Scholar 

  7. Burns KE, Adhikari NK, Meade MO (2006) A meta-analysis of noninvasive weaning to facilitate liberation from mechanical ventilation. Can J Anaesth 53: 305–315

    Article  PubMed  Google Scholar 

  8. Canadian Critical Care Trials Group (2006) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355: 2619–2630

    Article  Google Scholar 

  9. Centers for Disease Control and Prevention. http://www.cdc.gov

  10. Conrad SA, Gabrielli A, Margolis B et al. (2005) Randomized, double-blind comparison of immediate-release omeprazole oral suspension versus intravenous cimetidine for the prevention of upper gastrointestinal bleeding in critically ill patients. Crit Care Med 33: 760–765

    Article  PubMed  CAS  Google Scholar 

  11. Cook DJ, Walter SD, Cook RJ et al. (1998) Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med 129: 433–440

    PubMed  CAS  Google Scholar 

  12. Cross AS, Roup B (1981) Role of respiratory assistance devices in endemic nosocomial pneumonia. Am J Med 70: 681–685

    Article  PubMed  CAS  Google Scholar 

  13. de Jonge E, Schultz MJ, Spanjaard L et al. (2003) Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 362: 1011–1016

    Article  CAS  Google Scholar 

  14. Fabregas N, Torres A, El-Ebiary M et al. (1996) Histopathologic and microbiologic aspects of ventilator-associated pneumonia. Anesthesiology 84: 760–771

    Article  PubMed  CAS  Google Scholar 

  15. Fagon JY, Chastre J, Wolff M et al. (2000) Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 132: 621–630

    PubMed  CAS  Google Scholar 

  16. Fujitani S, Yu VL (2006) Diagnosis of ventilator-associated pneumonia: focus on nonbronchoscopic techniques (nonbronchoscopic bronchoalveolar lavage, including mini-BAL, blinded protected specimen brush, and blinded bronchial sampling) and endotracheal aspirates. J Intensive Care Med 21: 17–21

    Article  PubMed  Google Scholar 

  17. Giantsou E, Liratzopoulos N, Efraimidou E et al. (2005) Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive Care Med 31: 1488–1494

    Article  PubMed  Google Scholar 

  18. Gibot S, Cravoisy A, Levy B et al. (2004) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 350: 451–458

    Article  PubMed  CAS  Google Scholar 

  19. Girou E, Schortgen F, Delclaux C et al. (2000) Association of noninvasive ventilation with nosocomial infections and survival in critically ill patients. JAMA 284: 2361–2367

    Article  PubMed  CAS  Google Scholar 

  20. Ibrahim EH, Mehringer L, Prentice D et al. (2002) Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. J Parenter Enteral Nutr 26: 174–181

    Article  Google Scholar 

  21. Ibrahim EH, Tracy L, Hill C et al. (2001) The occurrence of ventilator-associated pneumonia in a community hospital: risk factors and clinical outcomes. Chest 120: 555–561

    Article  PubMed  CAS  Google Scholar 

  22. Ibrahim EH, Ward S, Sherman G, Kollef MH (2000) A comparative analysis of patients with early-onset vs late-onset nosocomial pneumonia in the ICU setting. Chest 117: 1434–1442

    Article  PubMed  CAS  Google Scholar 

  23. Iregui M, Ward S, Sherman G et al. (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122: 262–268

    Article  PubMed  Google Scholar 

  24. Koeman M, van d V, Hak E et al. (2006) Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia. Am J Respir Crit Care Med 173: 1348–1355

    Article  PubMed  CAS  Google Scholar 

  25. Kollef MH, Skubas NJ, Sundt TM (1999) A randomized clinical trial of continuous aspiration of subglottic secretions in cardiac surgery patients. Chest 116: 1339–1346

    Article  PubMed  CAS  Google Scholar 

  26. Lorente L, Lecuona M, Jimenez A et al. (2007) Influence of an endotracheal tube with polyurethane cuff and subglottic drainage on pneumonia. Am J Respir Crit Care Med

  27. MacIntyre NR (2005) Ventilator-associated pneumonia: the role of ventilator management strategies. Respir Care 50: 766–772

    PubMed  Google Scholar 

  28. Muscedere J, Dodek P, Keenan S et al. (2008) Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: prevention. J Crit Care 23: 126–137

    Article  PubMed  Google Scholar 

  29. Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen. http://www.nrz-hygiene.de

  30. Paul M, uri-Silbiger I, Soares-Weiser K, Leibovici L (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328: 668

    Article  PubMed  CAS  Google Scholar 

  31. Resar R, Pronovost P, Haraden C et al. (2005) Using a bundle approach to improve ventilator care processes and reduce ventilator-associated pneumonia. Jt Comm J Qual Patient Saf 31: 243–248

    PubMed  Google Scholar 

  32. Ruiz M, Torres A, Ewig S et al. (2000) Noninvasive versus invasive microbial investigation in ventilator-associated pneumonia: evaluation of outcome. Am J Respir Crit Care Med 162: 119–125

    PubMed  CAS  Google Scholar 

  33. Safdar N, Dezfulian C, Collard HR, Saint S (2005) Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med 33: 2184–2193

    Article  PubMed  Google Scholar 

  34. Sanchez-Nieto JM, Torres A, Garcia-Cordoba F et al. (1998) Impact of invasive and noninvasive quantitative culture sampling on outcome of ventilator-associated pneumonia: a pilot study. Am J Respir Crit Care Med 157: 371–376

    PubMed  CAS  Google Scholar 

  35. Sandiumenge A, Diaz E, Bodi M, Rello J (2003) Therapy of ventilator-associated pneumonia. A patient-based approach based on the ten rules of the tarragona strategy. Intensive Care Med 29: 876–883

    PubMed  Google Scholar 

  36. Shorr AF, Sherner JH, Jackson WL, Kollef MH (2005) Invasive approaches to the diagnosis of ventilator-associated pneumonia: a meta-analysis. Crit Care Med 33: 46–53

    Article  PubMed  Google Scholar 

  37. Sole VJ, Fernandez JA, Benitez AB et al. (2000) Impact of quantitative invasive diagnostic techniques in the management and outcome of mechanically ventilated patients with suspected pneumonia. Crit Care Med 28: 2737–2741

    Article  Google Scholar 

  38. Sole-Violan J, Rodriguez de CF, Rey A et al. (1994) Usefulness of microscopic examination of intracellular organisms in lavage fluid in ventilator-associated pneumonia. Chest 106: 889–894

    Article  PubMed  CAS  Google Scholar 

  39. Torres A, El-Ebiary M (2000) Bronchoscopic BAL in the diagnosis of ventilator-associated pneumonia. Chest 117: 198S–202S

    Article  PubMed  CAS  Google Scholar 

  40. Valles J, Rello J, Fernandez R et al. (1994) Role of bronchoalveolar lavage in mechanically ventilated patients with suspected pneumonia. Eur J Clin Microbiol Infect Dis 13: 549–558

    Article  PubMed  CAS  Google Scholar 

  41. Welte T (2006) Die nosokomiale Pneumonie. Intensivmedizin 43: 301–309

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dembinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dembinski, R., Rossaint, R. Ventilatorassoziierte Pneumonie. Anaesthesist 57, 825–842 (2008). https://doi.org/10.1007/s00101-008-1415-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-008-1415-x

Schlüsselwörter

Keywords

Navigation