Skip to main content
Log in

Neue KDIGO-Leitlinien zur akuten Nierenschädigung

Praktische Handlungsempfehlungen

New KDIGO guidelines on acute kidney injury

Practical recommendations

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die akute Nierenschädigung („acute kidney injury“, AKI) hat bei kritisch kranken Patienten eine hohe Inzidenz und geht mit einer signifikant erhöhten Morbidität und Mortalität im Kurz- und Langzeitverlauf einher. Im Jahr 2012 wurden die KDIGO-Leitlinien (Kidney Disease Improving Global Outcome, KDIGO) publiziert, in denen evidenzbasierte praktische Empfehlungen zur Behandlung von Patienten mit AKI gegeben werden. Der 1. Teil der Leitlinien befasst sich mit der Vereinheitlichung von bisherigen Definitionen sowie der Schweregradeinteilung der AKI. In den weiteren Abschnitten wird unter Berücksichtigung der vorhandenen Evidenz auf Prävention, medikamentöse Therapie und Nierenersatztherapie bei Patienten mit AKI eingegangen. In jedem Abschnitt wird nach Darstellung der aktuellen Datenlage eine klare und gewichtete Behandlungsempfehlung ausgesprochen. Bei Nichtverfügbarkeit von spezifischen medikamentösen Therapien sind die wesentlichen Pfeiler einer effektiven Behandlung die frühe Diagnostik, die Vermeidung von Nephrotoxinen, eine aggressive hämodynamische Optimierung unter strikter Kontrolle des Volumenstatus sowie letztlich eine effektive, aber schonende Nierenersatztherapie.

Abstract

The incidence of acute kidney injury (AKI) in critically ill patients is very high and is associated with an increased morbidity and mortality. In 2012 the Kidney Disease: Improving Global Outcome (KDIGO) guidelines were published in which evidence-based practical recommendations are given for the evaluation and management of patients with AKI. The first section of the KDIGO guidelines deals with the unification of earlier consensus definitions and staging criteria for AKI. The subsequent sections of the guidelines cover the prevention and treatment of AKI as well as the management of renal replacement therapy (RRT) in patients with AKI. In each section the existing evidence is discussed and a specific treatment recommendation is given. The guidelines appreciates that there is insufficient evidence for many of the recommendations. As a specific pharmacological therapy is missing, an early diagnosis, aggressive hemodynamic optimization, tight volume control, and avoidance of nephrotoxic drugs are the only interventions to prevent AKI. If renal replacement therapy is required different modalities are available to provide an effective therapy with a low rate of adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766

    Article  PubMed  Google Scholar 

  2. Rewa O, Bagshaw SM (2014) Acute kidney injury – epidemiology, outcomes and economics. Nat Rev Nephrol 10:193–207

    Article  CAS  PubMed  Google Scholar 

  3. Susantitaphong P et al (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8:1482–1493

    Article  PubMed  Google Scholar 

  4. KDIGO AKI Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138

    Article  Google Scholar 

  5. Atkins D et al (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490

    Article  PubMed  Google Scholar 

  6. Uhlig K et al (2006) Grading evidence and recommendations for clinical practice guidelines in nephrology. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 70:2058–2065

    CAS  PubMed  Google Scholar 

  7. Hoste EA et al (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10:R73

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uchino S et al (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34:1913–1917

    Article  PubMed  Google Scholar 

  9. Bellomo R, Kellum JA, Ronco C (2004) Defining acute renal failure: physiological principles. Intensive Care Med 30:33–37

    Article  PubMed  Google Scholar 

  10. Kellum JA, Bellomo R, Ronco C (2007) The concept of acute kidney injury and the RIFLE criteria. Contrib Nephrol 156:10–16

    Article  PubMed  Google Scholar 

  11. Mehta RL et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bagshaw SM et al (2008) A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23:1203–1210

    Article  PubMed  Google Scholar 

  13. Thakar CV et al (2009) Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med 37:2552–2558

    Article  PubMed  Google Scholar 

  14. Joannidis M et al (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35:1692–1702

    Article  PubMed  Google Scholar 

  15. Amdur RL et al (2009) Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int 76:1089–1097

    Article  PubMed  Google Scholar 

  16. Coca SG et al (2009) Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 53:961–973

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wald R et al (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302:1179–1185

    Article  CAS  PubMed  Google Scholar 

  18. Ad-hoc working group of ERBP et al (2012) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant 27:4263–4272

    Article  Google Scholar 

  19. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  20. Walsh M et al (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119:507–515

    Article  PubMed  Google Scholar 

  21. Asfar P et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593

    Article  CAS  PubMed  Google Scholar 

  22. Bouchard J et al (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76:422–427

    Article  PubMed  Google Scholar 

  23. Payen D et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74

    Article  PubMed  PubMed Central  Google Scholar 

  24. Finfer S et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  CAS  PubMed  Google Scholar 

  25. Annane D et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310:1809–1817

    Article  CAS  PubMed  Google Scholar 

  26. Perner A et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134

    Article  CAS  PubMed  Google Scholar 

  27. Myburgh JA et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911

    Article  CAS  PubMed  Google Scholar 

  28. Yunos NM et al (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308:1566–1572

    Article  CAS  PubMed  Google Scholar 

  29. Caironi P et al (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370:1412–1421

    Article  CAS  PubMed  Google Scholar 

  30. Russell JA et al (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358:877–887

    Article  CAS  PubMed  Google Scholar 

  31. De Backer D et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789

    Article  Google Scholar 

  32. Rivers E et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  33. Dellinger RP et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  PubMed  Google Scholar 

  34. Lin SM et al (2006) A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock 26:551–557

    Article  PubMed  Google Scholar 

  35. Donati A et al (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132:1817–1824

    Article  PubMed  Google Scholar 

  36. Brienza N et al (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090

    Article  PubMed  Google Scholar 

  37. Pro CI et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693

    Article  Google Scholar 

  38. Berghe G van den et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  39. Van den Berghe G et al (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461

    Article  Google Scholar 

  40. Griesdale DE et al (2009) Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 180:821–827

    Article  PubMed  PubMed Central  Google Scholar 

  41. Investigators N.-S.S. et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297

    Article  Google Scholar 

  42. NICE-SUGAR Study Investigators et al (2012) Hypoglycemia and risk of death in critically ill patients. N Engl J Med 367:1108–1118

    Article  Google Scholar 

  43. Karajala V, Mansour W, Kellum JA (2009) Diuretics in acute kidney injury. Minerva Anestesiol 75:251–257

    CAS  PubMed  Google Scholar 

  44. Ho KM, Power BM (2010) Benefits and risks of furosemide in acute kidney injury. Anaesthesia 65:283–293

    Article  CAS  PubMed  Google Scholar 

  45. Cogliati AA et al (2007) Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vasc Anesth 21:847–850

    Article  CAS  PubMed  Google Scholar 

  46. Morelli A et al (2005) Prophylactic fenoldopam for renal protection in sepsis: a randomized, double-blind, placebo-controlled pilot trial. Crit Care Med 33:2451–2456

    Article  CAS  PubMed  Google Scholar 

  47. Tumlin JA et al (2005) Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis 46:26–34

    Article  CAS  PubMed  Google Scholar 

  48. Ding H et al (1993) Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest 91:2281–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Friedlaender M et al (1995) Insulin-like growth factor-1 (IGF-1) enhances recovery from HgCl2-induced acute renal failure: the effects on renal IGF-1, IGF-1 receptor, and IGF-binding protein-1 mRNA. J Am Soc Nephrol 5:1782–1791

    CAS  PubMed  Google Scholar 

  50. Franklin SC et al (1997) Insulin-like growth factor I preserves renal function postoperatively. Am J Physiol 272(2 Pt 2):F257–F259

    CAS  PubMed  Google Scholar 

  51. Hirschberg R et al (1999) Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int 55:2423–2432

    Article  CAS  PubMed  Google Scholar 

  52. Hladunewich MA et al (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64:593–602

    Article  CAS  PubMed  Google Scholar 

  53. Bellomo R (2006) The epidemiology of acute renal failure: 1975 versus 2005. Curr Opin Crit Care 12:557–560

    Article  PubMed  Google Scholar 

  54. Bliziotis IA et al (2005) Ciprofloxacin vs an aminoglycoside in combination with a beta-lactam for the treatment of febrile neutropenia: a meta-analysis of randomized controlled trials. Mayo Clin Proc 80:1146–1156

    Article  CAS  PubMed  Google Scholar 

  55. Falagas ME, Matthaiou DK, Bliziotis IA (2006) The role of aminoglycosides in combination with a beta-lactam for the treatment of bacterial endocarditis: a meta-analysis of comparative trials. J Antimicrob Chemother 57:639–647

    Article  CAS  PubMed  Google Scholar 

  56. Falagas ME et al (2007) Meta-analysis: randomized controlled trials of clindamycin/aminoglycoside vs. beta-lactam monotherapy for the treatment of intra-abdominal infections. Aliment Pharmacol Ther 25:537–556

    Article  CAS  PubMed  Google Scholar 

  57. Paul M et al (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328:668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paul M et al (2006) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 1:CD003344

    PubMed  Google Scholar 

  59. Harbarth S et al (2002) Clinical and economic outcomes of conventional amphotericin B-associated nephrotoxicity. Clin Infect Dis 35:e120–e127

    Article  PubMed  Google Scholar 

  60. Ullmann AJ (2008) Nephrotoxicity in the setting of invasive fungal diseases. Mycoses 51(Suppl 1):25–30

    Article  PubMed  Google Scholar 

  61. Cornely OA et al (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18(Suppl 7):19–37

    Article  CAS  PubMed  Google Scholar 

  62. ACT Investigators (2011) Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation 124:1250–1259

    Article  Google Scholar 

  63. Bouman CS et al (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 30:2205–2211

    Article  PubMed  Google Scholar 

  64. Karvellas CJ et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care 15:R72

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dubois MJ et al (2006) Albumin administration improves organ function in critically ill hypoalbuminemic patients: a prospective, randomized, controlled, pilot study. Crit Care Med 34:2536–2540

    Article  CAS  PubMed  Google Scholar 

  66. Prowle JR, Kirwan CJ, Bellomo R (2014) Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 10:37–47

    Article  CAS  PubMed  Google Scholar 

  67. Cruz DN et al (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36:444–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liano F, Pascual J (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int 50:811–818

    Article  CAS  PubMed  Google Scholar 

  69. Bagshaw SM et al (2006) Renal recovery after severe acute renal failure. Int J Artif Organs 29:1023–1030

    CAS  PubMed  Google Scholar 

  70. Bellomo R et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–1638

    Article  PubMed  Google Scholar 

  71. Palevsky PM et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20

    Article  CAS  PubMed  Google Scholar 

  72. Uchino S et al (2009) Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med 37:2576–2582

    Article  PubMed  Google Scholar 

  73. O’Grady NP et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol 23:759–769

    Article  Google Scholar 

  74. Vascular Access Work Group (2006) Clinical practice guidelines for vascular access. Am J Kidney Dis 48(Suppl 1):S176–S247

    Article  Google Scholar 

  75. Karakitsos D et al (2006) Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 10:R162

    Article  PubMed  PubMed Central  Google Scholar 

  76. Leung J, Duffy M, Finckh A (2006) Real-time ultrasonographically-guided internal jugular vein catheterization in the emergency department increases success rates and reduces complications: a randomized, prospective study. Ann Emerg Med 48:540–547

    Article  PubMed  Google Scholar 

  77. Pronovost P (2008) Interventions to decrease catheter-related bloodstream infections in the ICU: the Keystone Intensive Care Unit Project. Am J Infect Control 36:S171 e1–e5

    Article  PubMed  Google Scholar 

  78. Jorres A et al (2013) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines on Acute Kidney Injury: part 2: renal replacement therapy. Nephrol Dial Transplant 28:2940–2945

    Article  PubMed  Google Scholar 

  79. Rabindranath K et al (2007) Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev 3:CD003773

    PubMed  Google Scholar 

  80. Pannu N et al (2008) Renal replacement therapy in patients with acute renal failure: a systematic review. JAMA 299:793–805

    Article  CAS  PubMed  Google Scholar 

  81. Bagshaw SM et al (2008) Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med 36:610–617

    Article  PubMed  Google Scholar 

  82. Schefold JC et al (2014) The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): a prospective randomized controlled trial. Crit Care 18:R11

    Article  PubMed  PubMed Central  Google Scholar 

  83. Davenport A, Will EJ, Davison AM (1991) Continuous vs. intermittent forms of haemofiltration and/or dialysis in the management of acute renal failure in patients with defective cerebral autoregulation at risk of cerebral oedema. Contrib Nephrol 93:225–233

    CAS  PubMed  Google Scholar 

  84. Davenport A, Will EJ, Davison AM (1990) Early changes in intracranial pressure during haemofiltration treatment in patients with grade 4 hepatic encephalopathy and acute oliguric renal failure. Nephrol Dial Transplant 5:192–198

    Article  CAS  PubMed  Google Scholar 

  85. Davenport A (2009) Continuous renal replacement therapies in patients with liver disease. Semin Dial 22:169–172

    Article  PubMed  Google Scholar 

  86. Davenport A (2009) Continuous renal replacement therapies in patients with acute neurological injury. Semin Dial 22:165–168

    Article  PubMed  Google Scholar 

  87. Levraut J et al (2003) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med 31:705–710

    Article  CAS  PubMed  Google Scholar 

  88. Barenbrock M et al (2000) Effects of bicarbonate- and lactate-buffered replacement fluids on cardiovascular outcome in CVVH patients. Kidney Int 58:1751–1757

    Article  CAS  PubMed  Google Scholar 

  89. McLean AG et al (2000) Effects of lactate-buffered and lactate-free dialysate in CAVHD patients with and without liver dysfunction. Kidney Int 58:1765–1772

    Article  CAS  PubMed  Google Scholar 

  90. Tan HK, Uchino S, Bellomo R (2003) The acid-base effects of continuous hemofiltration with lactate or bicarbonate buffered replacement fluids. Int J Artif Organs 26:477–483

    CAS  PubMed  Google Scholar 

  91. Zimmerman D et al (1999) Continuous veno-venous haemodialysis with a novel bicarbonate dialysis solution: prospective cross-over comparison with a lactate buffered solution. Nephrol Dial Transplant 14:2387–2391

    Article  CAS  PubMed  Google Scholar 

  92. Ronco C et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30

    Article  CAS  PubMed  Google Scholar 

  93. Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. D. Kindgen-Milles erhielt Vortragshonorare und Forschungsunterstützung von Fresenius Medical Care sowie Vortragshonorare von Gambro und Bard. A. Jörres erhielt Vortragshonorare von Fresenius Medical Care und Gambro. S. John erhält Honorare als Mitglied eines „Medical Advisory Boards“ der Firma „Baxter-Gambro Renal“. A. Zarbock: keine Angabe. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zarbock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarbock, A., John, S., Jörres, A. et al. Neue KDIGO-Leitlinien zur akuten Nierenschädigung. Anaesthesist 63, 578–588 (2014). https://doi.org/10.1007/s00101-014-2344-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-014-2344-5

Schlüsselwörter

Keywords

Navigation