Skip to main content
Log in

Einfluss von körperlicher Aktivität und Sport auf die Knochengesundheit im Lebenslauf

Ein Überblick

Impact of physical activity and exercise on bone health in the life course

A review

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Körperliche Aktivität und Sport sind nicht nur für die metabolische und kardiovaskuläre Gesundheit, sondern auch für die Knochengesundheit von großer Bedeutung. Der vorliegende Überblicksartikel fasst Ergebnisse aus Beobachtungs- und Interventionsstudien zusammen, die den Zusammenhang zwischen körperlicher/sportlicher Aktivität und der Knochengesundheit im Lebenslauf untersuchen. Bereits im Kindes- und Jugendalter führen körperliche Aktivität und Sport zu einem erhöhten Knochenzuwachs. Im Erwachsenenalter kann altersbedingter Knochenschwund durch kontinuierliche und über mehrere Monate durchgeführte Sportprogramme vermindert werden. Dabei zeigen insbesondere Weight-Bearing Activities einen bedeutenden osteogenen Effekt. Im Kindes- und Jugendalter ist ein höherer Knochenzuwachs bis zu fünf Jahre nach Beendigung des Sportprogramms zu beobachten. Im Erwachsenenalter hingegen nimmt die Knochenfestigkeit nach Einstellung sportlicher Aktivitäten sogar schneller ab als bei Personen, die keinen Sport getrieben haben. Kontinuierlich durchgeführte körperliche und sportliche Aktivität sowie die Implementierung von Sportprogrammen in Schulen und bevölkerungsbasierten Interventionsprogrammen sind präventive Maßnahmen, um Osteoporose und osteoporosebedingten Frakturen vorzubeugen. Aufgrund fehlender prospektiver Langzeituntersuchungen ist die vermutete langfristig anhaltende Schutzwirkung von hoher körperlicher Aktivität und Sport im Kindes- und Jugendalter auf den altersbedingten Knochenschwund im Erwachsenenalter noch nicht belegt.

Abstract

Physical activity and exercise are important determinants for metabolic and cardiovascular health. They also play an important role for bone health in childhood, adolescence, and adulthood. This review summarizes results from observational and intervention studies which evaluated the association between physical activity/exercise and bone health in different life course stages. In childhood and adolescence, physical activity and exercise induce improved bone accrual. In adulthood, mainly in postmenopausal women, long-term exercise programs reduce age-related bone loss. Especially weight-bearing activities seem to have an important osteogenic effect. Children and adolescent show a higher bone accrual until 5 years after cessation of an exercise program compared to their peers, who do not participate in an exercise program. In contrast, adults who quit exercising have a higher decrease in bone stiffness compared to adults who never exercised. This effect was particularly seen in postmenopausal women. Continuous physical activity and exercise over the life course and the implementation of exercise programs in schools and community-based intervention programs can help prevent or even reduce osteoporosis and osteoporosis-related fractures. Due to the lack of prospective longitudinal studies, the supposed long-term sustainable protective effect of physical activity and exercise in childhood and adolescent on bone health in later adulthood is not well established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bailey CA, Kukuljan S, Daly RM (2010) Effects of lifetime loading history on cortical bone density and its distribution in middle-aged and older men. Bone 47:673–680

    Article  PubMed  Google Scholar 

  2. Bemben DA, Bemben MG (2011) Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int 22:179–186

    Article  PubMed  CAS  Google Scholar 

  3. Bleicher K, Cumming RG, Naganathan V et al (2011) Lifestyle factors, medications, and disease influence bone mineral density in older men: findings from the CHAMP study. Osteoporos Int 22(9):2421–2437

    Article  PubMed  CAS  Google Scholar 

  4. Devlin MJ, Stetter CM, Lin HM et al (2010) Peripubertal estrogen levels and physical activity affect femur geometry in young adult women. Osteoporos Int 21:609–617

    Article  PubMed  CAS  Google Scholar 

  5. Ferry B, Duclos M, Burt L et al (2011) Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab 29:342–351

    Article  PubMed  Google Scholar 

  6. Foley S, Quinn S, Jones G (2010) Pedometer determined ambulatory activity and bone mass: a population-based longitudinal study in older adults. Osteoporos Int 21:1809–1816

    Article  PubMed  CAS  Google Scholar 

  7. Gunter K, Baxter-Jones AD, Mirwald RL et al (2008) Jump starting skeletal health: a 4-year longitudinal study assessing the effects of jumping on skeletal development in pre and circum pubertal children. Bone 42:710–718

    Article  PubMed  Google Scholar 

  8. Helge EW, Aagaard P, Jakobsen MD et al (2010) Recreational football training decreases risk factors for bone fractures in untrained premenopausal women. Scand J Med Sci Sports 20(Suppl 1):31–39

    Article  PubMed  Google Scholar 

  9. Janz KF, Medema-Johnson HC, Letuchy EM et al (2008) Subjective and objective measures of physical activity in relationship to bone mineral content during late childhood: the Iowa Bone Development Study. Br J Sports Med 42:658–663

    Article  PubMed  CAS  Google Scholar 

  10. Janz KF, Letuchy EM, Eichenberger Gilmore JM et al (2010) Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc 42:1072–1078

    PubMed  Google Scholar 

  11. Kriemler S, Zahner L, Puder JJ et al (2008) Weight-bearing bones are more sensitive to physical exercise in boys than in girls during pre- and early puberty: a cross-sectional study. Osteoporos Int 19:1749–1758

    Article  PubMed  CAS  Google Scholar 

  12. Meyer U, Romann M, Zahner L et al (2011) Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone 48:792–797

    Article  PubMed  Google Scholar 

  13. Nikander R, Kannus P, Rantalainen T et al (2010) Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int 21:1687–1694

    Article  PubMed  CAS  Google Scholar 

  14. Schoenau E (2004) The peak bone mass concept: is it still relevant? Bone 19:825–831

    Google Scholar 

  15. Uusi-Rasi K, Sievanen H, Pasanen M et al (2008) Influence of calcium intake and physical activity on proximal femur bone mass and structure among pre- and postmenopausal women. A 10-year prospective study. Calcif Tissue Int 82:171–181

    Article  PubMed  CAS  Google Scholar 

  16. Weeks BK, Young CM, Beck BR (2008) Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and girls: the POWER PE study. J Bone Miner Res 23:1002–1011

    Article  PubMed  Google Scholar 

  17. Whiteford J, Ackland TR, Dhaliwal SS et al (2010) Effects of a 1-year randomized controlled trial of resistance training on lower limb bone and muscle structure and function in older men. Osteoporos Int 21:1529–1536

    Article  PubMed  CAS  Google Scholar 

  18. Daly RM (2007) The effect of exercise on bone mass and structural geometry during growth. Med Sport Sci 51:33–49

    Article  PubMed  Google Scholar 

  19. Rizzoli R, Bianchi ML, Garabedian M et al (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  20. Schoenau E, Frost HM (2002) The „muscle-bone unit“ in children and adolescents. Calcif Tissue Int 70:405–407

    Article  PubMed  CAS  Google Scholar 

  21. Schoenau E (2006) Bone mass increase in puberty: what makes it happen? Horm Res 65(Suppl 2):2–10

    Article  PubMed  CAS  Google Scholar 

  22. Schoenau E, Fricke O (2006) Interaction between muscle and bone. Horm Res 66:73–78

    Article  CAS  Google Scholar 

  23. Schoenau E, Fricke O (2008) Mechanical influences on bone development in children. Eur J Endocrinol 159:S27–S31

    Article  PubMed  CAS  Google Scholar 

  24. Borer KT (2005) Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med 35:779–830

    Article  PubMed  Google Scholar 

  25. Nikander R, Sievanen H, Heinonen A et al (2010) Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8:47

    Article  PubMed  Google Scholar 

  26. World Health Organisation (WHO) (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129 (edn. Geneva)

    Google Scholar 

  27. World Health Organisation (WHO) (2007) WHO scientific group on the assessment of osteoporosis at primary health care level. Summary Meeting Report Brussels, Belgium, S 5–7 May 2004

  28. Sievanen H (2010) Immobilization and bone structure in humans. Arch Biochem Biophys 503:146–152

    Article  PubMed  Google Scholar 

  29. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100:126–131

    PubMed  CAS  Google Scholar 

  30. Wang QJ, Suominen H, Nicholson PH et al (2005) Influence of physical activity and maturation status on bone mass and geometry in early pubertal girls. Scand J Med Sci Sports 15:100–106

    Article  PubMed  CAS  Google Scholar 

  31. Duncan CS, Blimkie CJ, Cowell CT et al (2002) Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc 34:286–294

    Article  PubMed  Google Scholar 

  32. Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156

    Article  PubMed  CAS  Google Scholar 

  33. Gunter K, Baxter-Jones AD, Mirwald RL et al (2008) Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res 23:986–993

    Article  PubMed  Google Scholar 

  34. Karlsson MK (2007) Does exercise during growth prevent fractures in later life? Med Sport Sci 51:121–136

    Article  PubMed  Google Scholar 

  35. Kontulainen S, Kannus P, Haapasalo H et al (2001) Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res 16:195–201

    Article  PubMed  CAS  Google Scholar 

  36. McKay H, Tsang G, Heinonen A et al (2005) Ground reaction forces associated with an effective elementary school based jumping intervention. Br J Sports Med 39:10–14

    Article  PubMed  CAS  Google Scholar 

  37. Ward KA, Roberts SA, Adams JE, Mughal MZ (2005) Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36:1012–1018

    Article  PubMed  CAS  Google Scholar 

  38. Creighton DL, Morgan AL, Boardley D, Brolinson PG (2001) Weight-bearing exercise and markers of bone turnover in female athletes. J Appl Physiol 90:565–570

    PubMed  CAS  Google Scholar 

  39. Berger C, Goltzman D, Langsetmo L et al (2010) Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J Bone Miner Res 25:1948–1957

    Article  PubMed  Google Scholar 

  40. Valdimarsson O, Linden C, Johnell O et al (2006) Daily physical education in the school curriculum in prepubertal girls during 1 year is followed by an increase in bone mineral accrual and bone width – data from the prospective controlled Malmo pediatric osteoporosis prevention study. Calcif Tissue Int 78:65–71

    Article  PubMed  CAS  Google Scholar 

  41. Janz KF, Gilmore JM, Levy SM et al (2007) Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Bone 41:216–222

    Article  PubMed  Google Scholar 

  42. Tobias JH, Steer CD, Mattocks CG et al (2007) Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res 22:101–109

    Article  PubMed  Google Scholar 

  43. Bass SL, Saxon L, Daly RM et al (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280

    Article  PubMed  CAS  Google Scholar 

  44. Heinonen A, Sievanen H, Kannus P et al (2002) Site-specific skeletal response to long-term weight training seems to be attributable to principal loading modality: a pQCT study of female weightlifters. Calcif Tissue Int 70:469–474

    Article  PubMed  CAS  Google Scholar 

  45. Macdonald HM, Kontulainen SA, Khan KM, McKay HA (2007) Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res 22:434–446

    Article  PubMed  Google Scholar 

  46. Mackelvie KJ, Petit MA, Khan KM et al (2004) Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 34:755–764

    Article  PubMed  Google Scholar 

  47. McKay HA, Petit MA, Schutz RW et al (2000) Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr 136:156–162

    Article  PubMed  CAS  Google Scholar 

  48. Linden C, Ahlborg HG, Besjakov J et al (2006) A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study. J Bone Miner Res 21:829–835

    Article  PubMed  Google Scholar 

  49. Tournis S, Michopoulou E, Fatouros IG et al (2010) Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls. J Clin Endocrinol Metab 95:2755–2762

    Article  PubMed  CAS  Google Scholar 

  50. Ducher G, Bass SL, Saxon L, Daly RM (2010) Effects of repetitive loading on the growth-induced changes in bone mass and cortical bone geometry: a 12-month study in pre/peri- and post-menarcheal tennis players. J Bone Miner Res [Epub ahead of print]

  51. Johannsen N, Binkley T, Englert V et al (2003) Bone response to jumping is site-specific in children: a randomized trial. Bone 33:533–539

    Article  PubMed  Google Scholar 

  52. Mackelvie KJ, McKay HA, Khan KM, Crocker PR (2001) A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 139:501–508

    Article  PubMed  CAS  Google Scholar 

  53. Mackelvie KJ, Khan KM, Petit MA et al (2003) A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics 112:e447

    Article  PubMed  Google Scholar 

  54. Petit MA, McKay HA, Mackelvie KJ et al (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372

    Article  PubMed  CAS  Google Scholar 

  55. Nikander R, Kannus P, Dastidar P et al (2009) Targeted exercises against hip fragility. Osteoporos Int 20:1321–1328

    Article  PubMed  CAS  Google Scholar 

  56. Fredericson M, Chew K, Ngo J et al (2007) Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med 41:664–668

    Article  PubMed  Google Scholar 

  57. Pettersson U, Nordstrom P, Alfredson H et al (2000) Effect of high impact activity on bone mass and size in adolescent females: a comparative study between two different types of sports. Calcif Tissue Int 67:207–214

    Article  PubMed  CAS  Google Scholar 

  58. Valdimarsson O, Alborg HG, Duppe H et al (2005) Reduced training is associated with increased loss of BMD. J Bone Miner Res 20:906–912

    Article  PubMed  Google Scholar 

  59. Ducher G, Daly RM, Bass SL (2009) Effects of repetitive loading on bone mass and geometry in young male tennis players: a quantitative study using MRI. J Bone Miner Res 24:1686–1692

    Article  PubMed  Google Scholar 

  60. Sundberg M, Gardsell P, Johnell O et al (2002) Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: a combined cross-sectional and 3-year longitudinal study. Calcif Tissue Int 71:406–415

    Article  PubMed  CAS  Google Scholar 

  61. Physical Activity Guidelines Advisory Committee (2008) Physical Activity Guidelines Advisory Committee Report, 2008.: U.S.: Department of Health and Human Service, Washington, DC

  62. Janssen I, Leblanc AG (2010) Systematic review of the health benefits of physical activity and fitness in school-aged children and youth 3. Int J Behav Nutr Phys Act 7:40

    Article  PubMed  Google Scholar 

  63. Haapasalo H, Kontulainen S, Sievanen H et al (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  PubMed  CAS  Google Scholar 

  64. Karlsson MK, Linden C, Karlsson C et al (2000) Exercise during growth and bone mineral density and fractures in old age. Lancet 355:469–470

    PubMed  CAS  Google Scholar 

  65. Nordstrom A, Karlsson C, Nyquist F et al (2005) Bone loss and fracture risk after reduced physical activity. J Bone Miner Res 20:202–207

    Article  PubMed  Google Scholar 

  66. Oliver H, Jameson KA, Sayer AA et al (2007) Growth in early life predicts bone strength in late adulthood: the Hertfordshire Cohort Study. Bone 41:400–405

    Article  PubMed  Google Scholar 

  67. Uusi-Rasi K, Sievanen H, Heinonen A et al (2006) Long-term recreational gymnastics provides a clear benefit in age-related functional decline and bone loss. A prospective 6-year study. Osteoporos Int 17:1154–1164

    Article  PubMed  CAS  Google Scholar 

  68. Jarvinen TL, Kannus P, Sievanen H (2003) Estrogen and bone – a reproductive and locomotive perspective. J Bone Miner Res 18:1921–1931

    Article  PubMed  Google Scholar 

  69. Borer KT, Fogleman K, Gross M et al (2007) Walking intensity for postmenopausal bone mineral preservation and accrual. Bone 41:713–721

    Article  PubMed  Google Scholar 

  70. Engelke K, Kemmler W, Lauber D et al (2006) Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporos Int 17:133–142

    Article  PubMed  CAS  Google Scholar 

  71. Maddalozzo GF, Snow CM (2000) High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 66:399–404

    Article  PubMed  CAS  Google Scholar 

  72. Vainionpaa A, Korpelainen R, Leppaluoto J, Jamsa T (2005) Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int 16:191–197

    Article  PubMed  Google Scholar 

  73. Winters-Stone KM, Snow CM (2006) Site-specific response of bone to exercise in premenopausal women. Bone 39:1203–1209

    Article  PubMed  Google Scholar 

  74. Moayyeri A (2008) The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol 18:827–835

    Article  PubMed  Google Scholar 

  75. Vainionpaa A, Korpelainen R, Sievanen H et al (2007) Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 40:604–611

    Article  PubMed  Google Scholar 

  76. Winters KM, Snow CM (2000) Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res 15:2495–2503

    Article  PubMed  CAS  Google Scholar 

  77. Bemben DA, Fetters NL, Bemben MG et al (2000) Musculoskeletal responses to high- and low-intensity resistance training in early postmenopausal women. Med Sci Sports Exerc 32:1949–1957

    Article  PubMed  CAS  Google Scholar 

  78. Singh JA, Schmitz KH, Petit MA (2009) Effect of resistance exercise on bone mineral density in premenopausal women. Joint Bone Spine 76:273–280

    Article  PubMed  Google Scholar 

  79. Vanni AC, Meyer F, Veiga AD da, Zanardo VP (2010) Comparison of the effects of two resistance training regimens on muscular and bone responses in premenopausal women. Osteoporos Int 21:1537–1544

    Article  PubMed  CAS  Google Scholar 

  80. Puntila E, Kroger H, Lakka T et al (2001) Leisure-time physical activity and rate of bone loss among peri- and postmenopausal women: a longitudinal study. Bone 29:442–446

    Article  PubMed  CAS  Google Scholar 

  81. Feskanich D, Willett W, Colditz G (2002) Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 288:2300–2306

    Article  PubMed  Google Scholar 

  82. Bemben DA, Palmer IJ, Bemben MG, Knehans AW (2010) Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women. Bone 47:650–656

    Article  PubMed  Google Scholar 

  83. Rhodes EC, Martin AD, Taunton JE et al (2000) Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med 34:18–22

    Article  PubMed  CAS  Google Scholar 

  84. Kemmler W, Engelke K, Weineck J et al (2003) The Erlangen Fitness Osteoporosis Prevention Study: a controlled exercise trial in early postmenopausal women with low bone density-first-year results. Arch Phys Med Rehabil 84:673–682

    PubMed  Google Scholar 

  85. Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J et al (2006) Effect of impact exercise on bone mineral density in elderly women with low BMD: a population-based randomized controlled 30-month intervention. Osteoporos Int 17:109–118

    Article  PubMed  Google Scholar 

  86. Kemmler W, Engelke K, Lauber D et al (2002) Exercise effects on fitness and bone mineral density in early postmenopausal women: 1-year EFOPS results. Med Sci Sports Exerc 34:2115–2123

    Article  PubMed  CAS  Google Scholar 

  87. Karinkanta S, Heinonen A, Sievanen H et al (2007) A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int 18:453–462

    Article  PubMed  CAS  Google Scholar 

  88. Hamilton CJ, Swan VJ, Jamal SA (2010) The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: a systematic review of pQCT studies. Osteoporos Int 21:11–23

    Article  PubMed  CAS  Google Scholar 

  89. Karlsson MK, Nordqvist A, Karlsson C (2008) Physical activity, muscle function, falls and fractures. Food Nutr Res 52

  90. Liu-Ambrose T, Khan KM, Eng JJ et al (2004) Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone mass: a 6-month randomized, controlled trial. J Am Geriatr Soc 52:657–665

    Article  PubMed  Google Scholar 

  91. Sherrington C, Whitney JC, Lord SR et al (2008) Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc 56:2234–2243

    Article  PubMed  Google Scholar 

  92. Cawthon PM (2011) Gender differences in osteoporosis and fractures. Clin Orthop Relat Res 469(7):1900–1905

    Article  PubMed  Google Scholar 

  93. Cauley JA, Fullman RL, Stone KL et al (2005) Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 16:1525–1537

    Article  PubMed  Google Scholar 

  94. Cousins JM, Petit MA, Paudel ML et al (2010) Muscle power and physical activity are associated with bone strength in older men: the osteoporotic fractures in men study. Bone 47:205–211

    Article  PubMed  Google Scholar 

  95. Daly RM, Bass SL (2006) Lifetime sport and leisure activity participation is associated with greater bone size, quality and strength in older men. Osteoporos Int 17:1258–1267

    Article  PubMed  CAS  Google Scholar 

  96. Blain H, Jaussent A, Thomas E et al (2010) Appendicular skeletal muscle mass is the strongest independent factor associated with femoral neck bone mineral density in adult and older men. Exp Gerontol 45:679–684

    Article  PubMed  Google Scholar 

  97. Michaelsson K, Olofsson H, Jensevik K et al (2007) Leisure physical activity and the risk of fracture in men. PLoS Med 4:e199

    Article  PubMed  Google Scholar 

  98. Uusi-Rasi K, Sievanen H, Pasanen M et al (2002) Associations of calcium intake and physical activity with bone density and size in premenopausal and postmenopausal women: a peripheral quantitative computed tomography study. J Bone Miner Res 17:544–552

    Article  PubMed  CAS  Google Scholar 

  99. Kato T, Yamashita T, Mizutani S et al (2009) Adolescent exercise associated with long-term superior measures of bone geometry: a cross-sectional DXA and MRI study. Br J Sports Med 43:932–935

    Article  PubMed  CAS  Google Scholar 

  100. McKay H, Liu D, Egeli D et al (2011) Physical activity positively predicts bone architecture and bone strength in adolescent males and females. Acta Paediatr 100:97–101

    Article  PubMed  Google Scholar 

  101. Gerdhem P, Akesson K, Obrant KJ (2003) Effect of previous and present physical activity on bone mass in elderly women. Osteoporos Int 14:208–212

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ahrens.

Additional information

___Hinweis_____

Die Arbeit wurde unterstützt durch das Kompetenznetz Adipositas, gefördert vom deutschen Bundesministerium für Bildung und Forschung (Förderkennzeichen DLR 01GI0822).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, D., Hebestreit, A. & Ahrens, W. Einfluss von körperlicher Aktivität und Sport auf die Knochengesundheit im Lebenslauf. Bundesgesundheitsbl. 55, 35–54 (2012). https://doi.org/10.1007/s00103-011-1393-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-011-1393-z

Schlüsselwörter

Keywords

Navigation