Skip to main content
Log in

Krebshemmende Wirkung des ätherischen Salbei-Öls auf eine Plattenepithelzellkarzinom-Zelllinie der Mundhöhle (UMSCC1)

Anticancer activity of Salvia officinalis essential oil against HNSCC cell line (UMSCC1)

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das Mundhöhlenkarzinom ist mit mehreren Hunderttausend Neuerkrankungen im Jahr ein weltweites Problem. Die Behandlung ist mit schwierigen Operationen, schweren Nebenwirkungen der medikamentösen Behandlung und allgemein schlechter Prognose verbunden. Da sich die Mehrzahl der heute verwendeten Krebsmedikamente von Wirkstoffen natürlichen Ursprungs ableitet, stellen Naturprodukte noch immer wertvolle Quellen für neue Therapieoptionen. In dieser Untersuchung wurde die zytotoxische Wirkung des ätherischen Öls von Salvia officinalis L. (Salbei) untersucht.

Material und Methoden

Nach wässriger Extraktion aus den Pflanzenteilen wurde das ätherische Öl von Salvia officinalis im Gaschromatographen analysiert. Die Zytotoxizität des ätherischen Öls auf die Plattenepithelzellkarzinom-Zelllinie UMSCC1 wurde im XTT-Assay untersucht. Mit der daraus ermittelten halbmaximalen inhibitorischen Konzentration (IC50) des ätherischen Öls wurde eine microarraybasierte Analyse der Genexpression durchgeführt. Die Werte der differenziellen Genaktivitäten wurden anschließend aktivierten Signalwegen zugeordnet.

Ergebnisse

Das ätherische Öl von Salvia officinalis enthielt vor allem die Monoterpene Thujon, β-Pinen und 1,8-Cineol. Niedrige Konzentrationen erhöhten im XTT-Assay die Vitalität der UMSCC1 bis zu einem Schwellenwert um die IC50 von 135 µg/ml, ab dem die Vitalität rasch gegen Null ging. Die differenzielle Genaktivität in der Microarray-Analyse ergab vor allem Gene aus den Bereichen Krebs, Zellwachstum und -proliferation, Zelltod, Zellmorphologie, Zellzyklus und DNA-Reparatur. Die am deutlichsten aktivierten Signalwege waren der Aryl-Hydrocarbon-Rezeptor-Signalweg, der Zellzyklusübergang von der G1- zur S-Phase und der p53-Signalweg.

Schlussfolgerung

Diese Untersuchung belegt zum ersten Mal die zytotoxische Wirkung des ätherischen Öls von Salvia officinalis auf eine humane Plattenepithelzellkarzinom-Zelllinie (UMSCC1) der Mundhöhle. Das therapeutische Potenzial des Salbeis reicht damit möglicherweise weit über die tradierten Anwendungsgebiete in der Hals-Nasen-Ohren-Heilkunde hinaus.

Abstract

Background

Every year there are several hundred thousand new cases of oral cancer worldwide. Clinical oncology is still challenged by toxicity and side effects of multimodal therapy strategies in which is associated with poor prognosis for patients. There is an urgent necessity to develop novel therapy strategies. As the majority of anticancer drugs are of natural origin, natural products represent a valuable source for the identification and development of novel treatment options for cancer. The aim of this investigation was to study the cytotoxicity of Salvia officinalis L. (sage) essential oil.

Methods

Salvia officinalis essential oil was gained by aqueous extraction from plant material and subsequently analyzed by gas chromatography. The cytotoxicity of the essential oil on the squamous human cell carcinoma cell line of the oral cavity (UMSCC1) was assessed with the XTT assay. These experiments revealed the half maximal inhibitory concentration (IC50) of the essential oil. It was used in the microarray-based analysis of gene expression of UMSSC1 cells. The results were submitted to a signaling pathway analysis.

Results

The main constituents of Salvia officinalis essential oil include the monoterpenes thujone, β-pinene, and 1,8-cineol. Low concentrations of the essential oil increased vitality of the UMSCC1 cells. Beyond the concentration of the IC50 of 135 µg/ml, sage essential oil reduced UMSSC1 cells viability to a minimum. In the microarray gene expression analysis, genes involved in cancer, cellular growth and proliferation, cell death, cell morphology, cell cycle, gene expression, and DNA repair were the most prominent. The three most significantly regulated pathways by sage were aryl hydrocarbon receptor signaling, cell cycle (G1/S checkpoint) regulation, and p53 signaling.

Conclusion

To the best of our knowledge, this study suggests for the first time the ability of Salvia officinalis essential oil to inhibit human HNSCC cell growth. The therapeutic potential of sage essential oil might exceed that of its common use in otorhinolaryngology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Safran M et al (2011) GeneCards. The human gene compendium. Homepage. Weizman Institute of Science, Rehovot, Israel. http://www.genecards.org/index.shtml. Zugegriffen: 30.08.11

  2. Blumenthal M, Busse WR, Goldberg A (1998) The complete German Commission E monographs: therapeutic guide to herbal medicines. In: Integrative medicine communications. American Botanical Council, Austin/TX, S 685

  3. Boehme KA, Blattner C (2009) Regulation of p53–insights into a complex process. Crit Rev Biochem Mol Biol 44:367–392

    Article  PubMed  CAS  Google Scholar 

  4. Capasso R, Izzo AA, Capasso F et al (2004) A diterpenoid from Salvia cinnabarina inhibits mouse intestinal motility in vivo. Planta Med 70:375–377

    Article  PubMed  CAS  Google Scholar 

  5. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  6. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  7. Fiore G, Nencini C, Cavallo F et al (2006) In vitro antiproliferative effect of six Salvia species on human tumor cell lines. Phytother Res 20:701–703

    Article  PubMed  Google Scholar 

  8. Forastiere A, Koch W, Trotti A et al (2001) Head and neck cancer. N Engl J Med 345:1890–1900

    Article  PubMed  CAS  Google Scholar 

  9. Gasiewicz TA, Henry EC, Collins LL (2008) Expression and activity of aryl hydrocarbon receptors in development and cancer. Crit Rev Eukaryot Gene Expr 18:279–321

    PubMed  CAS  Google Scholar 

  10. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  11. Li YL, Yeung CM, Chiu LC et al (2009) Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Schefflera heptaphylla. Phytother Res 23:140–142

    Article  PubMed  CAS  Google Scholar 

  12. Lima CF, Valentao PC, Andrade PB et al (2007) Water and methanolic extracts of Salvia officinalis protect HepG2 cells from t-BHP induced oxidative damage. Chem Biol Interact 167:107–115

    Article  PubMed  CAS  Google Scholar 

  13. Lin CJ, Grandis JR, Carey TE et al (2007) Head and neck squamous cell carcinoma cell lines: Established models and rationale for selection. Head Neck 29:163–188

    Article  PubMed  Google Scholar 

  14. Loizzo MR, Tundis R, Menichini F et al (2007) Cytotoxic activity of essential oils from labiatae and lauraceae families against in vitro human tumor models. Anticancer Res 27:3293–3299

    PubMed  CAS  Google Scholar 

  15. Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52:195–215

    Article  PubMed  Google Scholar 

  16. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  17. Owa T, Yoshino H, Yoshimatsu K et al (2001) Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem 8:1487–1503

    PubMed  CAS  Google Scholar 

  18. Rakover Y, Ben-Arye E, Goldstein LH (2008) The treatment of respiratory ailments with essential oils of some aromatic medicinal plants. Harefuah 147:783–788, 838

    PubMed  Google Scholar 

  19. Ren Y, Houghton PJ, Hider RC et al (2004) Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorhiza. Planta Med 70:201–204

    Article  PubMed  CAS  Google Scholar 

  20. Slamenova D, Masterova I, Labaj J et al (2004) Cytotoxic and DNA-damaging effects of diterpenoid quinones from the roots of Salvia officinalis L. On colonic and hepatic human cells cultured in vitro. Basic Clin Pharmacol Toxicol 94:282–290

    PubMed  CAS  Google Scholar 

  21. Vichi P, Tritton TR (1989) Stimulation of growth in human and murine cells by adriamycin. Cancer Res 49:2679–2682

    PubMed  CAS  Google Scholar 

  22. Weisenthal LM, Dill PL, Kurnick NB et al (1983) Comparison of dye exclusion assays with a clonogenic assay in the determination of drug-induced cytotoxicity. Cancer Res 43:258–264

    PubMed  CAS  Google Scholar 

  23. Xavier CP, Lima CF, Fernandes-Ferreira M et al (2009) Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr Cancer 61:564–571

    Article  PubMed  CAS  Google Scholar 

  24. Zupko I, Hohmann J, Redei D et al (2001) Antioxidant activity of leaves of Salvia species in enzyme-dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents. Planta Med 67:366–368

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sertel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sertel, S., Eichhorn, T., Plinkert, P. et al. Krebshemmende Wirkung des ätherischen Salbei-Öls auf eine Plattenepithelzellkarzinom-Zelllinie der Mundhöhle (UMSCC1). HNO 59, 1203–1208 (2011). https://doi.org/10.1007/s00106-011-2274-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-011-2274-3

Schlüsselwörter

Keywords

Navigation