Skip to main content
Log in

Anti-inflammatory properties of lipid oxidation products

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Oxidative modification of lipids occurs during inflammatory processes and leads to the formation and accumulation of biologically active lipid oxidation products that induce specific cellular reactions. These reactions lead to a modulation of the inflammatory process and may determine the fate and outcome of the body's reaction in acute inflammation during host defense. The processes by which oxidized lipids may play an important role include resolution of inflammation involving apoptosis, chronic inflammatory processes, and innate and adaptive immune responses. The classical view of lipid oxidation products is that they can induce and propagate chronic inflammatory reactions. However, evidence is accumulating that cells and tissues respond towards these oxidatively formed stress signals also by activation of anti-inflammatory processes. These include defense strategies such as (a) induction of signaling pathways leading to the upregulation of anti-inflammatory genes, (b) inhibition of signaling pathways coupled to the expression of proinflammatory genes, and (c) preventing the interaction of proinflammatory bacterial products with host cells. This contribution summarizes recent findings on the anti-inflammatory action of oxidized lipoproteins and lipid oxidation products. We discuss confirmed and suggested mechanisms as well as the (patho)physiological significance of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

AH:

Acetylhydrolase

AP :

Activator protein

COX :

Cyclooxygenase

CRE :

cAMP-response elements

CREB :

cAMP-response element binding protein

Egr :

Early growth response factor

HDL :

High-density lipoprotein

HETE :

Hydroxyeicosatetraenoic acid

HNE :

Hydroxynonenal

HO :

Heme oxygenase

HODE :

Hydroxyoctadecadienoic acid

ICAM :

Intercellular adhesion molecule

IFN :

Interferon

IKK :

IκB kinase

IL :

Interleukin

LPS :

Lipopolysaccharide

LXR :

Liver X receptors

MCP :

Monocyte chemotactic protein

MM-LDL :

Minimally modified LDL

NF :

Nuclear factor

NFAT :

Nuclear factor activated T cells

OxLDL :

Oxidized low-density lipoprotein

OxPAPC :

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

PAF :

Platelet-activating factor

PG :

Prostaglandin

PKA :

Protein kinase A

POVPC :

1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine

PPAR :

Peroxisome proliferator activated receptors

PPRE :

Peroxisome proliferator activated receptor response element

ROS :

Reactive oxygen species

STAT :

Signal transducer and activator of transcription

TLR :

Toll-like receptor

TNF :

Tumor necrosis factor

VCAM :

Vascular cell adhesion molecule

References

  1. Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    CAS  PubMed  Google Scholar 

  2. Chisolm GM, Steinberg D (2000) The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 28:1815–1826

    Article  CAS  PubMed  Google Scholar 

  3. Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van LB, Frank JS, Demer LL, Edwards PA, Fogelman AM (1996) The yin and yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 16:831–842

    CAS  PubMed  Google Scholar 

  4. Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20:707–727

    CAS  PubMed  Google Scholar 

  5. Witztum JL, Berliner JA (1998) Oxidized phospholipids and isoprostanes in atherosclerosis. Curr Opin Lipidol 9:441–448

    Article  CAS  PubMed  Google Scholar 

  6. McIntyre TM, Zimmerman GA, Prescott SM (1999) Biologically active oxidized phospholipids. J Biol Chem 274:25189–25192

    Article  CAS  PubMed  Google Scholar 

  7. Leonarduzzi G, Arkan MC, Basaga H, Chiarpotto E, Sevanian A, Poli G (2000) Lipid oxidation products in cell signaling. Free Radic Biol Med 28:1370–1378

    Article  CAS  PubMed  Google Scholar 

  8. Subbanagounder G, Watson AD, Berliner JA (2000) Bioactive products of phospholipid oxidation: isolation, identification, measurement and activities. Free Radic Biol Med 28:1751–1761

    Article  CAS  PubMed  Google Scholar 

  9. Mertens A, Holvoet P (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 15:2073–2084

    Article  CAS  PubMed  Google Scholar 

  10. Berliner JA, Subbanagounder G, Leitinger N, Watson AD, Vora D (2001) Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc Med 11:142–147

    Article  CAS  PubMed  Google Scholar 

  11. Navab M, Hama SY, Ready ST, Ng CJ, Van Lenten BJ, Laks H, Fogelman AM (2002) Oxidized lipids as mediators of coronary heart disease. Curr Opin Lipidol 13:363–372

    Article  CAS  PubMed  Google Scholar 

  12. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:77–81

    Article  CAS  PubMed  Google Scholar 

  13. Tjoelker LW, Stafforini DM (2000) Platelet-activating factor acetylhydrolases in health and disease. Biochim Biophys Acta 1488:102–123

    Article  CAS  PubMed  Google Scholar 

  14. Tjoelker LW, Wilder C, Eberhardt C, Stafforini DM, Dietsch G, Schimpf B, Hooper S, Le Trong H, Cousens LS, Zimmerman GA (1995) Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature 374:549–553

    CAS  PubMed  Google Scholar 

  15. Tselepis AD, John CM (2002) Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler Suppl 3:57–68

    Article  CAS  PubMed  Google Scholar 

  16. Navab M, Hama SY, Hough GP, Hedrick CC, Sorenson R, La Du BN, Kobashigawa JA, Fonarow GC, Berliner JA, Laks H, Fogelman AM (1998) High density associated enzymes: their role in vascular biology. Curr Opin Lipidol 9:449–456

    Article  CAS  PubMed  Google Scholar 

  17. Navab M, Berliner JA, Subbanagounder G, Hama S, Lusis AJ, Castellani LW, Reddy S, Shih D, Shi W, Watson AD, Van Lenten BJ, Vora D, Fogelman AM (2001) HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol 21:481–488

    CAS  PubMed  Google Scholar 

  18. Read TE, Harris HW, Grunfeld C, Feingold KR, Kane JP, Rapp JH (1993) The protective effect of serum lipoproteins against bacterial lipopolysaccharide. Eur Heart J 14 Suppl K:125–129

    Google Scholar 

  19. Leeuwen HJ van, van Beek AP, Dallinga-Thie GM, van Strijp JA, Verhoef J, van Kessel KP (2001) The role of high density lipoprotein in sepsis. Neth J Med 59:102–110

    Article  PubMed  Google Scholar 

  20. Rauchhaus M, Coats AJ, Anker SD (2000) The endotoxin-lipoprotein hypothesis. Lancet 356:930–933

    Article  CAS  PubMed  Google Scholar 

  21. Leitinger N, Berliner JA (1999) MM-LDL and atherogenesis—a major role for phospholipid oxidation products. In: Keaney JF Jr (ed) Oxidative stress and vascular disease. Kluwer

  22. Steinberg D (1996) Oxidized low density lipoprotein-an extreme example of lipoprotein heterogeneity. Isr J Med Sci 32:469–472

    CAS  PubMed  Google Scholar 

  23. Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28:1685–1696

    Article  CAS  PubMed  Google Scholar 

  24. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97:9052–9057

    Article  CAS  PubMed  Google Scholar 

  25. Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107:255–264

    CAS  PubMed  Google Scholar 

  26. Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13:1137–1143

    CAS  PubMed  Google Scholar 

  27. Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C, Rothwarf D, Baud V, Natoli G, Guido F, Li N (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15:87–89

    CAS  PubMed  Google Scholar 

  28. Huang ZH, Bates EJ, Ferrante JV, Hii CS, Poulos A, Robinson BS, Ferrante A (1997) Inhibition of stimulus-induced endothelial cell intercellular adhesion molecule-1, E-selectin, and vascular cellular adhesion molecule-1 expression by arachidonic acid and its hydroxy and hydroperoxy derivatives. Circ Res 80:149–158

    CAS  PubMed  Google Scholar 

  29. Forman BM, Chen J, Evans RM (1996) The peroxisome proliferator-activated receptors: ligands and activators. Ann N Y Acad Sci 804:266–275

    CAS  PubMed  Google Scholar 

  30. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    CAS  PubMed  Google Scholar 

  31. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400:378–382

    Article  CAS  PubMed  Google Scholar 

  32. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A, Haegeman G, Staels B (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274:32048–32054

    Article  CAS  PubMed  Google Scholar 

  33. Delerive P, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors in inflammation control J Endocrinol 169:453–459

    Google Scholar 

  34. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    CAS  PubMed  Google Scholar 

  35. Marx N, Mach F, Sauty A, Leung JH, Sarafi MN, Ransohoff RM, Libby P, Plutzky J, Luster AD (2000) Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 164:6503–6508

    CAS  PubMed  Google Scholar 

  36. Hourton D, Delerive P, Stankova J, Staels B, Chapman MJ, Ninio E (2001) Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor alpha down-regulate platelet-activating-factor receptor expression in human macrophages. Biochem J 354:225–232

    Article  CAS  PubMed  Google Scholar 

  37. Delerive P, Gervois P, Fruchart JC, Staels B (2000) Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J Biol Chem 275:36703–36707

    Article  CAS  PubMed  Google Scholar 

  38. Poynter ME, Daynes RA (1998) Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273:32833–32841

    Article  CAS  PubMed  Google Scholar 

  39. Khandoudi N, Delerive P, Berrebi-Bertrand I, Buckingham RE, Staels B, Bril A (2002) Rosiglitazone, a peroxisome proliferator-activated receptor-gamma, inhibits the Jun NH (2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes 51:1507–1514

    CAS  PubMed  Google Scholar 

  40. Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK (1998) Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 95:7614–7619

    CAS  PubMed  Google Scholar 

  41. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    CAS  PubMed  Google Scholar 

  42. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, Sengchanthalangsy LL, Ghosh G, Glass CK (2000) 15-deoxy-delta 12:14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci USA 97:4844–4849

    Article  CAS  PubMed  Google Scholar 

  43. Takata Y, Kitami Y, Yang ZH, Nakamura M, Okura T, Hiwada K (2002) Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circ Res 91:427–433

    Article  CAS  PubMed  Google Scholar 

  44. Takata Y, Kitami Y, Okura T, Hiwada K (2001) Peroxisome proliferator-activated receptor-gamma activation inhibits interleukin-1beta-mediated platelet-derived growth factor-alpha receptor gene expression via CCAAT/enhancer-binding protein-delta in vascular smooth muscle cells. J Biol Chem 276:12893–12897

    Article  CAS  PubMed  Google Scholar 

  45. Han KH, Chang MK, Boullier A, Green SR, Li A, Glass CK, Quehenberger O (2000) Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma. J Clin Invest 106:793–802

    CAS  PubMed  Google Scholar 

  46. Weber C, Draude G, Weber KS, Wubert J, Lorenz RL, Weber PC (1999) Downregulation by tumor necrosis factor-alpha of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein: a potential mechanism of monocyte retention in atherosclerotic lesions. Atherosclerosis 145:115–123

    Article  CAS  PubMed  Google Scholar 

  47. Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G, Kim TS (2000) Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 275:32681–32687

    Article  CAS  PubMed  Google Scholar 

  48. Kim YS, Han CY, Kim SW, Kim JH, Lee SK, Jung DJ, Park SY, Kang H, Choi HS, Lee JW, Pak YK (2001) The orphan nuclear receptor small heterodimer partner as a novel coregulator of nuclear factor-kappa b in oxidized low density lipoprotein-treated macrophage cell line RAW 264.7. J Biol Chem 276:33736–33740

    Article  CAS  PubMed  Google Scholar 

  49. Fischer B, von Knethen A, Brune B (2002) Dualism of oxidized lipoproteins in provoking and attenuating the oxidative burst in macrophages: role of peroxisome proliferator-activated receptor-gamma. J Immunol 168:2828–2834

    CAS  PubMed  Google Scholar 

  50. Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142:1–28

    Article  CAS  PubMed  Google Scholar 

  51. Colles SM, Maxson JM, Carlson SG, Chisolm GM (2001) Oxidized LDL-induced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc Med 11:131–138

    Article  CAS  PubMed  Google Scholar 

  52. Bjorkhem I, Diczfalusy U (2002) Oxysterols: friends, foes, or just fellow passengers? Arterioscler Thromb Vasc Biol 22:734–742

    Article  CAS  PubMed  Google Scholar 

  53. Ares MP, Kallin B, Eriksson P, Nilsson J (1995) Oxidized LDL induces transcription factor activator protein-1 but inhibits activation of nuclear factor-kappa B in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:1584–1590

    CAS  PubMed  Google Scholar 

  54. Ares MP, Stollenwerk M, Olsson A, Kallin B, Jovinge S, Nilsson J (2002) Decreased inducibility of TNF expression in lipid-loaded macrophages. BMC Immunol 3:13

    Article  PubMed  Google Scholar 

  55. Englund MC, Karlsson AL, Wiklund O, Bondjers G, Ohlsson BG (2001) 25-hydroxycholesterol induces lipopolysaccharide-tolerance and decreases a lipopolysaccharide-induced TNF-alpha secretion in macrophages. Atherosclerosis 158:61–71

    Article  CAS  PubMed  Google Scholar 

  56. Edwards PA, Kennedy MA, Mak PA (2002) LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vasc Pharmacol 38:249–256

    Article  CAS  Google Scholar 

  57. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  CAS  PubMed  Google Scholar 

  58. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GN, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 99:7604–7609

    Article  CAS  PubMed  Google Scholar 

  59. Tangirala RK, Bischoff ED, Joseph SB, Wagner BL, Walczak R, Laffitte BA, Daige CL, Thomas D, Heyman RA, Mangelsdorf DJ, Wang X, Lusis AJ, Tontonoz P, Schulman IG (2002) Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci USA 99:11896–11901

    Article  CAS  PubMed  Google Scholar 

  60. Page S, Fischer C, Baumgartner B, Haas M, Kreusel U, Loidl G, Hayn M, Ziegler-Heitbrock HW, Neumeier D, Brand K (1999) 4-Hydroxynonenal prevents NF-kappaB activation and tumor necrosis factor expression by inhibiting IkappaB phosphorylation and subsequent proteolysis. J Biol Chem 274:11611–11618

    Article  CAS  PubMed  Google Scholar 

  61. Donath B, Fischer C, Page S, Prebeck S, Jilg N, Weber M, da Costa C, Neumeier D, Miethke T, Brand K (2002) Chlamydia pneumoniae activates IKK/I kappa B-mediated signaling, which is inhibited by 4-HNE and following primary exposure. Atherosclerosis 165:79–88

    Article  CAS  PubMed  Google Scholar 

  62. Ji C, Kozak KR, Marnett LJ (2001) IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J Biol Chem 276:18223–18228

    Article  CAS  PubMed  Google Scholar 

  63. Vieira O, Escargueil-Blanc I, Jurgens G, Borner C, Almeida L, Salvayre R, Negre-Salvayre A (2000) Oxidized LDLs alter the activity of the ubiquitin-proteasome pathway: potential role in oxidized LDL-induced apoptosis. FASEB J 14:532–542

    CAS  PubMed  Google Scholar 

  64. Girona J, La Ville AE, Heras M, Olive S, Masana L (1997) Oxidized lipoproteins including HDL and their lipid peroxidation products inhibit TNF-alpha secretion by THP-1 human macrophages. Free Radic Biol Med 23:658–667

    Article  CAS  PubMed  Google Scholar 

  65. Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogel S, Dargel R, Poli G (1997) The lipid peroxidation end product 4-hydroxy-2:3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J 11:851–857

    CAS  PubMed  Google Scholar 

  66. Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88:877–887

    CAS  PubMed  Google Scholar 

  67. DiChiara MR, Kiely JM, Gimbrone MA Jr, Lee ME, Perrella MA, Topper JN (2000) Inhibition of E-selectin gene expression by transforming growth factor beta in endothelial cells involves coactivator integration of Smad and nuclear factor kappaB-mediated signals. J Exp Med 192:695–704

    Article  CAS  PubMed  Google Scholar 

  68. Berliner J, Leitinger N, Watson A, Huber J, Fogelman A, Navab M (1997) Oxidized lipids in atherogenesis: formation, destruction and action. Thromb Haemost 78:195–199

    CAS  PubMed  Google Scholar 

  69. Berliner JA, Subbanagounder G, Leitinger N, Watson AD, Vora D (2001) Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc Med 11:142–147

    Article  CAS  PubMed  Google Scholar 

  70. Chisolm GM, III, Hazen SL, Fox PL, Cathcart MK (1999) The oxidation of lipoproteins by monocytes-macrophages. Biochemical and biological mechanisms. J Biol Chem 274:25959–25962

    Article  CAS  PubMed  Google Scholar 

  71. Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanagounder G, Fogelman AM, Berliner JA (1997) Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272:13597–13607

    Article  CAS  PubMed  Google Scholar 

  72. Subbanagounder G, Wong JW, Lee H, Faull KF, Miller E, Witztum JL, Berliner JA (2002) Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1beta. J Biol Chem 277:7271–7281

    Article  CAS  PubMed  Google Scholar 

  73. Subbanagounder G, Deng Y, Borromeo C, Dooley AN, Berliner JA, Salomon RG (2002) Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vasc Pharmacol 38:201–209

    Article  CAS  Google Scholar 

  74. Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L, Febbraio M, Hajjar DP, Silverstein RL, Hoff HF, Salomon RG, Hazen SL (2002) A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 277:38517–38523

    Article  CAS  PubMed  Google Scholar 

  75. Podrez EA, Febbraio M, Sheibani N, Schmitt D, Silverstein RL, Hajjar DP, Cohen PA, Frazier WA, Hoff HF, Hazen SL (2000) Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 105:1095–1108

    CAS  PubMed  Google Scholar 

  76. Leitinger N, Watson AD, Faull KF, Fogelman AM, Berliner JA (1997) Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv Exp Med Biol 433:379–382

    CAS  PubMed  Google Scholar 

  77. Subbanagounder G, Leitinger N, Shih PT, Faull KF, Berliner JA (1999) Evidence that phospholipid oxidation products and/or platelet-activating factor play an important role in early atherogenesis: in vitro and In vivo inhibition by WEB 2086. Circ Res 85:311–318

    CAS  PubMed  Google Scholar 

  78. Subbanagounder G, Leitinger N, Schwenke DC, Wong JW, Lee H, Rizza C, Watson AD, Faull KF, Fogelman AM, Berliner JA (2000) Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol 20:2248–2254

    CAS  PubMed  Google Scholar 

  79. Parhami F, Fang ZT, Yang B, Fogelman AM, Berliner JA (1995) Stimulation of Gs and inhibition of Gi protein functions by minimally oxidized LDL. Arterioscler Thromb Vasc Biol 15:2019–2024

    CAS  PubMed  Google Scholar 

  80. Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC, Berliner JA (1993) Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest 92:471–478

    CAS  PubMed  Google Scholar 

  81. Kamido H, Eguchi H, Ikeda H, Imaizumi T, Yamana K, Hartvigsen K, Ravandi A, Kuksis A (2002) Core aldehydes of alkyl glycerophosphocholines in atheroma induce platelet aggregation and inhibit endothelium-dependent arterial relaxation. J Lipid Res 43:158–166

    CAS  PubMed  Google Scholar 

  82. Hoff HF, O'Neil J, Wu Z, Hoppe G, Salomon RL (2003) Phospholipid hydroxyalkenals: biological and chemical properties of specific oxidized lipids present in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 23:275–282

    Article  CAS  PubMed  Google Scholar 

  83. Tsimikas S, Bergmark C, Beyer RW, Patel R, Pattison J, Miller E, Juliano J, Witztum JL (2003) Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol 41:360–370

    Article  CAS  PubMed  Google Scholar 

  84. Subbanagounder G, Leitinger N, Schwenke DC, Wong JW, Lee H, Rizza C, Watson AD, Faull KF, Fogelman AM, Berliner JA (2000) Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol 20:2248–2254

    CAS  PubMed  Google Scholar 

  85. Lehr HA, Weyrich AS, Saetzler RK, Jurek A, Arfors KE, Zimmerman GA, Prescott SM, McIntyre TM (1997) Vitamin C blocks inflammatory platelet-activating factor mimetics created by cigarette smoking. J Clin Invest 99:2358–2364

    CAS  PubMed  Google Scholar 

  86. Frey B, Johnen W, Haupt R, Kern H, Rustow B, Kox WJ, Schlame M (2002) Bioactive oxidized lipids in the plasma of cardiac surgical intensive care patients. Shock 18:14–17

    PubMed  Google Scholar 

  87. Kadl A, Huber J, Gruber F, Bochkov VN, Binder BR, Leitinger N (2002) Analysis of inflammatory gene induction by oxidized phospholipids in vivo by quantitative real-time RT-PCR in comparison with effects of LPS. Vasc Pharmacol 38:219–227

    Article  CAS  Google Scholar 

  88. Stafforini DM, Satoh K, Atkinson DL, Tjoelker LW, Eberhardt C, Yoshida H, Imaizumi T, Takamatsu S, Zimmerman GA, McIntyre TM, Gray PW, Prescott SM (1996) Platelet-activating factor acetylhydrolase deficiency. A missense mutation near the active site of an anti-inflammatory phospholipase. J Clin Invest 97:2784–2791

    CAS  PubMed  Google Scholar 

  89. Watson AD, Navab M, Hama SY, Sevanian A, Prescott SM, Stafforini DM, McIntyre TM, Du BN, Fogelman AM, Berliner JA (1995) Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest 95:774–782

    CAS  PubMed  Google Scholar 

  90. Goyal J, Wang K, Liu M, Subbaiah PV (1997) Novel function of lecithin-cholesterol acyltransferase. Hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation. J Biol Chem 272:16231–16239

    Article  CAS  PubMed  Google Scholar 

  91. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    CAS  PubMed  Google Scholar 

  92. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44

    Article  CAS  PubMed  Google Scholar 

  93. Metnitz PG, Bartens C, Fischer M, Fridrich P, Steltzer H, Druml W (1999) Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med 25:180–185

    Article  CAS  PubMed  Google Scholar 

  94. Memon RA, Staprans I, Noor M, Holleran WM, Uchida Y, Moser AH, Feingold KR, Grunfeld C (2000) Infection and inflammation induce LDL oxidation in vivo. Arterioscler Thromb Vasc Biol 20:1536–1542

    CAS  PubMed  Google Scholar 

  95. Zhang R, Brennan ML, Shen Z, MacPherson JC, Schmitt D, Molenda CE, Hazen SL (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 277:46116–46122

    Article  CAS  PubMed  Google Scholar 

  96. Scaccini C, Jialal I (1994) LDL modification by activated polymorphonuclear leukocytes: a cellular model of mild oxidative stress. Free Radic Biol Med 16:49–55

    Article  CAS  PubMed  Google Scholar 

  97. Arroyo A, Modriansky M, Serinkan FB, Bello RI, Matsura T, Jiang J, Tyurin VA, Tyurina YY, Fadeel B, Kagan VE (2002) NADPH oxidase-dependent oxidation and externalization of phosphatidylserine during apoptosis in Me2SO-differentiated HL-60 cells. Role in phagocytic clearance. J Biol Chem 277:49965–49975

    Article  CAS  PubMed  Google Scholar 

  98. Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, Schor NF, Kawai K (2000) Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 477:1–7

    Article  CAS  PubMed  Google Scholar 

  99. Tyurina YY, Tyurin VA, Shvedova AA, Fabisiak JP, Kagan VE (2002) Peroxidation of phosphatidylserine in mechanisms of apoptotic signaling. Methods Enzymol 352:159–174

    CAS  PubMed  Google Scholar 

  100. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N (2002) Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 22:101–107

    Article  CAS  PubMed  Google Scholar 

  101. Bochkov VN, Mechtcheriakova D, Lucerna M, Huber J, Malli R, Graier WF, Hofer E, Binder BR, Leitinger N (2002) Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca (++)/NFAT 3. Blood 99:199–206

    Article  CAS  PubMed  Google Scholar 

  102. Reddy S, Hama S, Grijalva V, Hassan K, Mottahedeh R, Hough G, Wadleigh DJ, Navab M, Fogelman AM (2001) Mitogen-activated protein kinase phosphatase 1 activity is necessary for oxidized phospholipids to induce monocyte chemotactic activity in human aortic endothelial cells. J Biol Chem 276:17030–17035

    Article  CAS  PubMed  Google Scholar 

  103. Lee H, Shi W, Tontonoz P, Wang S, Subbanagounder G, Hedrick CC, Hama S, Borromeo C, Evans RM, Berliner JA, Nagy L (2000) Role for peroxisome proliferator-activated receptor alpha in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ Res 87:516–521

    CAS  PubMed  Google Scholar 

  104. Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B (2000) Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner. FEBS Lett 471:34–38

    Article  CAS  PubMed  Google Scholar 

  105. Davies SS, Pontsler AV, Marathe GK, Harrison KA, Murphy RC, Hinshaw JC, Prestwich GD, Hilaire AS, Prescott SM, Zimmerman GA, McIntyre TM (2001) Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists. J Biol Chem 276:16015–16023

    Article  CAS  PubMed  Google Scholar 

  106. Leitinger N, Tyner TR, Oslund L, Rizza C, Subbanagounder G, Lee H, Shih PT, Mackman N, Tigyi G, Territo MC, Berliner JA, Vora DK (1999) Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci USA 96:12010–12015

    Article  CAS  PubMed  Google Scholar 

  107. Pober JS, Slowik MR, De Luca LG, Ritchie AJ (1993) Elevated cyclic AMP inhibits endothelial cell synthesis and expression of TNF-induced endothelial leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1. J Immunol 150:5114–5123

    CAS  PubMed  Google Scholar 

  108. De LL, Johnson DR, Whitley MZ, Collins T, Pober JS (1994) cAMP and tumor necrosis factor competitively regulate transcriptional activation through and nuclear factor binding to the cAMP-responsive element/activating transcription factor element of the endothelial leukocyte adhesion molecule-1 (E-selectin) promoter. J Biol Chem 269:19193–19196

    PubMed  Google Scholar 

  109. Ollivier V, Parry GN, Cobb RR, de PD, Mackman N (1996) Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. J Biol Chem 271:20828–20835

    Article  CAS  PubMed  Google Scholar 

  110. Parry GC, Mackman N (1997) Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J Immunol 159:5450–5456

    CAS  PubMed  Google Scholar 

  111. Kamthong PJ, Wu FM, Wu MC (2000) cAMP attenuates interleukin-1-stimulated macrophage colony-stimulating factor (M-CSF) expression. Biochem J 350 Pt 1:115–122

    Google Scholar 

  112. Sullivan GW, Rieger JM, Scheld WM, Macdonald TL, Linden J (2001) Cyclic AMP-dependent inhibition of human neutrophil oxidative activity by substituted 2-propynylcyclohexyl adenosine A (2A) receptor agonists. Br J Pharmacol 132:1017–1026

    CAS  PubMed  Google Scholar 

  113. Takahashi N, Tetsuka T, Uranishi H, Okamoto T (2002) Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem 269:4559–4565

    Article  CAS  PubMed  Google Scholar 

  114. Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1:661–671

    CAS  PubMed  Google Scholar 

  115. Zhong H, SuYang H, Erdjument BH, Tempst P, Ghosh S (1997) The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89:413–424

    CAS  PubMed  Google Scholar 

  116. Morse D, Choi AM (2002) Heme oxygenase-1: the "emerging molecule" has arrived. Am J Respir Cell Mol Biol 27:8–16

    CAS  PubMed  Google Scholar 

  117. Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AM, Soares MP (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190

    Article  CAS  PubMed  Google Scholar 

  118. Otterbein LE, Bach FH, Alam J, Soares M, Tao LH, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    CAS  PubMed  Google Scholar 

  119. Ryter SW, Otterbein LE, Morse D, Choi AM (2002) Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 234–235:249–263

    Google Scholar 

  120. Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8:240–246

    Article  CAS  PubMed  Google Scholar 

  121. Ishikawa K, Navab M, Leitinger N, Fogelman AM, Lusis AJ (1997) Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. J Clin Invest 100:1209–1216

    CAS  PubMed  Google Scholar 

  122. Gilroy DW, Colville-Nash PR (2000) New insights into the role of COX 2 in inflammation. J Mol Med 78:121–129

    CAS  PubMed  Google Scholar 

  123. Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5:698–701

    CAS  PubMed  Google Scholar 

  124. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible new role for NF-kappaB in the resolution of inflammation 1. Nat Med 7:1291–1297

    Article  PubMed  Google Scholar 

  125. Willoughby DA, Moore AR, Colville-Nash PR, Gilroy D (2000) Resolution of inflammation. Int J Immunopharmacol 22:1131–1135

    Article  CAS  PubMed  Google Scholar 

  126. Schroer K, Zhu Y, Saunders MA, Deng WG, Xu XM, Meyer-Kirchrath J, Wu KK (2002) Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation 105:2760–2765

    Article  CAS  PubMed  Google Scholar 

  127. Billack B, Heck DE, Mariano TM, Gardner CR, Sur R, Laskin DL, Laskin JD (2002) Induction of cyclooxygenase-2 by heat shock protein 60 in macrophages and endothelial cells. Am J Physiol Cell Physiol 283:C1267–C1277

    CAS  PubMed  Google Scholar 

  128. Pontsler AV, St Hilaire A, Marathe GK, Zimmerman GA, McIntyre TM (2002) Cyclooxygenase-2 is induced in monocytes by peroxisome proliferator activated receptor gamma and oxidized alkyl phospholipids from oxidized low density lipoprotein. J Biol Chem 277:13029–13036

    Article  CAS  PubMed  Google Scholar 

  129. Silverman ES, Collins T (1999) Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 154:665–670

    CAS  PubMed  Google Scholar 

  130. Cui MZ, Penn MS, Chisolm GM (1999) Native and oxidized low density lipoprotein induction of tissue factor gene expression in smooth muscle cells is mediated by both Egr-1 and Sp1. J Biol Chem 274:32795–32802

    CAS  PubMed  Google Scholar 

  131. Chapman NR, Perkins ND (2000) Inhibition of the RelA (p65) NF-kappaB subunit by Egr-1. J Biol Chem 275:4719–4725

    Article  CAS  PubMed  Google Scholar 

  132. Hamilton TA, Ma GP, Chisolm GM (1990) Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-alpha mRNA in stimulated murine peritoneal macrophages. J Immunol 144:2343–2350

    CAS  PubMed  Google Scholar 

  133. Fong LG, Fong TA, Cooper AD (1990) Inhibition of mouse macrophage degradation of acetyl-low density lipoprotein by interferon-gamma. J Biol Chem 265:11751–11760

    CAS  PubMed  Google Scholar 

  134. Thai SF, Lewis JG, Williams RB, Johnson SP, Adams DO (1995) Effects of oxidized LDL on mononuclear phagocytes: inhibition of induction of four inflammatory cytokine gene RNAs, release of NO, and cytolysis of tumor cells. J Leukoc Biol 57:427–433

    CAS  PubMed  Google Scholar 

  135. Schackelford RE, Misra UK, Florine-Casteel K, Thai SF, Pizzo SV, Adams DO (1995) Oxidized low density lipoprotein suppresses activation of NF kappa B in macrophages via a pertussis toxin-sensitive signaling mechanism. J Biol Chem 270:3475–3478

    Article  CAS  PubMed  Google Scholar 

  136. Ohlsson BG, Englund MC, Karlsson AL, Knutsen E, Erixon C, Skribeck H, Liu Y, Bondjers G, Wiklund O (1996) Oxidized low density lipoprotein inhibits lipopolysaccharide-induced binding of nuclear factor-kappaB to DNA and the subsequent expression of tumor necrosis factor-alpha and interleukin-1beta in macrophages. J Clin Invest 98:78–89

    CAS  PubMed  Google Scholar 

  137. Brand K, Eisele T, Kreusel U, Page M, Page S, Haas M, Gerling A, Kaltschmidt C, Neumann FJ, Mackman N, Baeurele PA, Walli AK, Neumeier D (1997) Dysregulation of monocytic nuclear factor-kappa B by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 17:1901–1909

    CAS  PubMed  Google Scholar 

  138. Leitinger N, Tyner TR, Oslund L, Rizza C, Subbanagounder G, Lee H, Shih PT, Mackman N, Tigyi G, Territo MC, Berliner JA, Vora DK (1999) Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci USA 96:12010–12015

    Article  CAS  PubMed  Google Scholar 

  139. Subbanagounder G, Deng Y, Borromeo C, Dooley AN, Berliner JA, Salomon RG (2002) Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vasc Pharmacol 38:201–209

    Article  CAS  Google Scholar 

  140. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:77–81

    Article  CAS  PubMed  Google Scholar 

  141. Remer KA, Brcic M, Jungi TW (2003) Toll-like receptor-4 is involved in eliciting an LPS-induced oxidative burst in neutrophils. Immunol Lett 85:75–80

    Article  CAS  PubMed  Google Scholar 

  142. Vosbeck K, Tobias P, Mueller H, Allen RA, Arfors KE, Ulevitch RJ, Sklar LA (1990) Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein. J Leukoc Biol 47:97–104

    CAS  PubMed  Google Scholar 

  143. Riedemann NC, Ward PA (2002) Oxidized lipid protects against sepsis. Nat Med 8:1084–1085

    Article  CAS  PubMed  Google Scholar 

  144. Heumann D, Roger T (2002) Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta 323:59–72

    Article  CAS  PubMed  Google Scholar 

  145. Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266

    CAS  PubMed  Google Scholar 

  146. Honda HM, Leitinger N, Frankel M, Goldhaber JI, Natarajan R, Nadler JL, Weiss JN, Berliner JA (1999) Induction of monocyte binding to endothelial cells by MM-LDL: role of lipoxygenase metabolites. Arterioscler Thromb Vasc Biol 19:680–686

    CAS  PubMed  Google Scholar 

  147. Huber J, Boechzelt H, Karten B, Surboeck M, Bochkov VN, Binder BR, Sattler W, Leitinger N (2002) Oxidized cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway 1. Arterioscler Thromb Vasc Biol 22:581–586

    Article  CAS  PubMed  Google Scholar 

  148. Leitinger N, Huber J, Rizza C, Mechtcheriakova D, Bochkov V, Koshelnick Y, Berliner JA, Binder BR (2001) The isoprostane 8-iso-PGF (2alpha) stimulates endothelial cells to bind monocytes: differences from thromboxane-mediated endothelial activation. FASEB J 15:1254–1256

    CAS  PubMed  Google Scholar 

  149. Shih PT, Elices MJ, Fang ZT, Ugarova TP, Strahl D, Territo MC, Frank JS, Kovach NL, Cabanas C, Berliner JA, Vora DK (1999) Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating beta1 integrin. J Clin Invest 103:613–625

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery N. Bochkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochkov, V.N., Leitinger, N. Anti-inflammatory properties of lipid oxidation products. J Mol Med 81, 613–626 (2003). https://doi.org/10.1007/s00109-003-0467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0467-2

Keywords

Navigation