Skip to main content
Log in

Kupffer cells modulate iron homeostasis in mice via regulation of hepcidin expression

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Hepcidin, a small cationic liver derived peptide, is a master regulator of body iron homeostasis. Cytokines and iron availability have so far been identified as regulators of hepcidin expression. Herein, we investigated the functional role of Kupffer cells for hepcidin expression because of their vicinity to the hepatocytes and their importance for iron recycling via erythrophagocytosis. We investigated C57Bl6 mice and littermates, in which Kupffer cells were eliminated in vivo upon intravenous injection of liposome-encapsulated clodronate. Primary cultures of hepatocytes and Kupffer cells were used to study direct regulatory effects ex vivo. The in vivo depletion of Kupffer cells resulted in a significant increase in liver hepcidin expression, which was paralleled by a significant reduction in serum iron levels. The same pattern of regulation by Kupffer cell depletion was observed upon injection of bacterial lipopolysaccharide into mice and in primary (Hfe −/−) and in secondary iron-overloaded mice. Accordingly, the messenger ribonucleic acid (mRNA) concentrations of the hepcidin iron-sensing molecule hemojuvelin were not significantly changed upon Kupffer cell depletion. When primary hepatocytes were cocultivated with Kupffer cells or stimulated with a Kupffer cell-conditioned medium ex vivo, a significant reduction in hepatocyte hepcidin mRNA expression was observed. Our data suggest that Kupffer cells control body iron homeostasis by exerting negative regulatory signals toward hepcidin expression, which may be primarily referred to the secretion of yet unidentified hepcidin-suppressing molecules by Kupffer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783–788

    Article  PubMed  CAS  Google Scholar 

  2. Loreal O, Haziza-Pigeon C, Troadec MB, Detivaud L, Turlin B, Courselaud B, Ilyin G, Brissot P (2005) Hepcidin in iron metabolism. Curr Protein Pept Sci 6:279–291

    Article  PubMed  CAS  Google Scholar 

  3. Roy CN, Mak HH, Akpan I, Losyev G, Zurakowski D, Andrews NC (2007) Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood 109:4038–4044

    Article  PubMed  CAS  Google Scholar 

  4. Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S (2002) Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA 99:4596–4601

    Article  PubMed  CAS  Google Scholar 

  5. Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulos D, Camaschella C (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22

    Article  PubMed  CAS  Google Scholar 

  6. Muckenthaler M, Roy CN, Custodio AO, Minana B, deGraaf J, Montross LK, Andrews NC, Hentze MW (2003) Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nat Genet 34:102–107

    Article  PubMed  CAS  Google Scholar 

  7. Theurl I, Ludwiczek S, Eller P, Seifert M, Artner E, Brunner P, Weiss G (2005) Pathways for the regulation of body iron homeostasis in response to experimental iron overload. J Hepatol 43:711–719

    Article  PubMed  CAS  Google Scholar 

  8. Lin L, Valore EV, Nemeth E, Goodnough JB, Gabayan V, Ganz T (2007) Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood 110:2182–2189

    Article  PubMed  CAS  Google Scholar 

  9. Lee P, Peng H, Gelbart T, Wang L, Beutler E (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA 102:1906–1910

    Article  PubMed  CAS  Google Scholar 

  10. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461–2463

    Article  PubMed  CAS  Google Scholar 

  11. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D (2005) Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood 106:1864–1866

    Article  PubMed  CAS  Google Scholar 

  12. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352:1011–1023

    Article  PubMed  CAS  Google Scholar 

  13. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044

    PubMed  CAS  Google Scholar 

  14. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  15. Theurl I, Mattle V, Seifert M, Mariani M, Marth C, Weiss G (2006) Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood 107:4142–4148

    Article  PubMed  CAS  Google Scholar 

  16. Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ram GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673

    Article  PubMed  CAS  Google Scholar 

  17. Nairz M, Weiss G (2006) Molecular and clinical aspects of iron homeostasis: from anemia to hemochromatosis. Wien Klin Wochenschr 118:442–462

    Article  PubMed  CAS  Google Scholar 

  18. Pietrangelo A (2004) Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 350:2383–2397

    Article  PubMed  CAS  Google Scholar 

  19. Niederkofler V, Salie R, Arber S (2005) Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 115:2180–2186

    Article  PubMed  CAS  Google Scholar 

  20. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    Article  PubMed  Google Scholar 

  21. Bahram S, Gilfillan S, Kuhn LC, Moret R, Schulze JB, Lebeau A, Schumann K (1999) Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism. Proc Natl Acad Sci USA 96:13312–13317

    Article  PubMed  CAS  Google Scholar 

  22. Ludwiczek S, Theurl I, Muckenthaler MU, Jakab M, Mair SM, Theurl M, Kiss J, Paulmichl M, Hentze MW, Ritter M, Weiss G (2007) Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nat Med 13:448–454

    Article  PubMed  CAS  Google Scholar 

  23. Rosenkranz AR, Mendrick DL, Cotran RS, Mayadas TN (1999) P-selectin deficiency exacerbates experimental glomerulonephritis: a protective role for endothelial P-selectin in inflammation. J Clin Invest 103:649–659

    Article  PubMed  CAS  Google Scholar 

  24. Wallace DF, Summerville L, Lusby PE, Subramaniam VN (2005) Prohepcidin localises to the Golgi compartment and secretory pathway in hepatocytes. J Hepatol 43:720–728

    Article  PubMed  CAS  Google Scholar 

  25. Ludwiczek S, Theurl I, Artner-Dworzak E, Chorney M, Weiss G (2004) Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability. J Mol Med 82:373–382

    Article  PubMed  CAS  Google Scholar 

  26. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  PubMed  CAS  Google Scholar 

  27. Kreamer BL, Staecker JL, Sawada N, Sattler GL, Hsia MT, Pitot HC (1986) Use of a low-speed, iso-density Percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations. In Vitro Cell Dev Biol 22:201–211

    Article  PubMed  CAS  Google Scholar 

  28. Lentz PE, Di Luzio NR (1971) Biochemical characterization of Kupffer and parenchymal cells isolated from rat liver. Exp Cell Res 67:17–26

    Article  PubMed  CAS  Google Scholar 

  29. Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101

    Article  PubMed  CAS  Google Scholar 

  30. Lou DQ, Lesbordes JC, Nicolas G, Viatte L, Bennoun M, Van Rooijen N, Kahn A, Renia L, Vaulont S (2005) Iron- and inflammation-induced hepcidin gene expression in mice is not mediated by Kupffer cells in vivo. Hepatology 41:1056–1064

    Article  PubMed  CAS  Google Scholar 

  31. Montosi G, Corradini E, Garuti C, Barelli S, Recalcati S, Cairo G, Valli L, Pignatti E, Vecchi C, Ferrara F, Pietrangelo A (2005) Kupffer cells and macrophages are not required for hepatic hepcidin activation during iron overload. Hepatology 41:545–552

    Article  PubMed  CAS  Google Scholar 

  32. Palasz A, Czekaj P (2000) Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol 47:1107–1114

    PubMed  CAS  Google Scholar 

  33. Mosher B, Dean R, Harkema J, Remick D, Palma J, Crockett E (2001) Inhibition of Kupffer cells reduced CXC chemokine production and liver injury. J Surg Res 99:201–210

    Article  PubMed  CAS  Google Scholar 

  34. Ding H, Peng R, Reed E, Li QQ (2003) Effects of Kupffer cell inhibition on liver function and hepatocellular activity in mice. Int J Mol Med 12:549–557

    PubMed  CAS  Google Scholar 

  35. Yeh KY, Yeh M, Glass J (2004) Hepcidin regulation of ferroportin 1 expression in the liver and intestine of the rat. Am J Physiol Gastrointest Liver Physiol 286:G385–G394

    Article  PubMed  CAS  Google Scholar 

  36. Vaulont S, Lou DQ, Viatte L, Kahn A (2005) Of mice and men: the iron age. J Clin Invest 115:2079–2082

    Article  PubMed  CAS  Google Scholar 

  37. Constante M, Wang D, Raymond VA, Bilodeau M, Santos MM (2007) Repression of repulsive guidance molecule C during inflammation is independent of Hfe and involves tumor necrosis factor-alpha. Am J Pathol 170:497–504

    Article  PubMed  CAS  Google Scholar 

  38. Knolle P, Lohr H, Treichel U, Dienes HP, Lohse A, Schlaack J, Gerken G (1995) Parenchymal and nonparenchymal liver cells and their interaction in the local immune response. Z Gastroenterol 33:613–620

    PubMed  CAS  Google Scholar 

  39. Roland CR, Goss JA, Mangino MJ, Hafenrichter D, Flye MW (1994) Autoregulation by eicosanoids of human Kupffer cell secretory products. A study of interleukin-1, interleukin-6, tumor necrosis factor-alpha, transforming growth factor-beta, and nitric oxide. Ann Surg 219:389–399

    Article  PubMed  CAS  Google Scholar 

  40. Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192:245–261

    Article  PubMed  CAS  Google Scholar 

  41. Alvarez-Hernandez X, Liceaga J, McKay IC, Brock JH (1989) Induction of hypoferremia and modulation of macrophage iron metabolism by tumor necrosis factor. Lab Invest 61:319–322

    PubMed  CAS  Google Scholar 

  42. Wang RH, Li C, Xu X, Zheng Y, Xiao C, Zerfas P, Cooperman S, Eckhaus M, Rouault T, Mishra L, Deng CX (2005) A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2:399–409

    Article  PubMed  CAS  Google Scholar 

  43. Truksa J, Peng H, Lee P, Beutler E (2006) Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci USA 103:10289–10293

    Article  PubMed  CAS  Google Scholar 

  44. Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539

    Article  PubMed  CAS  Google Scholar 

  45. Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Austrian Science Fund FWF-19664 and the Tiroler Wissenschaftsfonds are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenter Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theurl, M., Theurl, I., Hochegger, K. et al. Kupffer cells modulate iron homeostasis in mice via regulation of hepcidin expression. J Mol Med 86, 825–835 (2008). https://doi.org/10.1007/s00109-008-0346-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0346-y

Keywords

Navigation