Skip to main content
Log in

Prostanoids and inflammation: a new concept arising from receptor knockout mice

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Prostanoids including various types of prostaglandins and thromboxanes are arachidonate metabolites produced and released in response to a variety of physiological and pathological stimuli and function to maintain the body homeostasis. Since cyclooxygenase, the enzyme initiating their biosynthesis, is inhibited by aspirin-like antipyretic, anti-inflammatory, and analgesic drugs, contribution of prostanoids to acute inflammation such as fever generation, pain sensitization, and inflammatory swelling has been recognized very early. On the other hand, since aspirin-like drugs generally show little effects on allergy and immunity, it has been believed that prostanoids play little roles in these processes. Prostanoids act on a family of G-protein-coupled receptors designated PGD receptor, PGE receptor subtypes EP1–EP4, PGF receptor, PGI receptor, and TX receptor to elicit their actions. Studies using mice deficient in each of these receptors have revealed that prostanoids indeed function in the above aspirin-sensitive processes. However, these studies have also revealed that prostanoids exert both pro-inflammatory and anti-inflammatory actions not only by acting as mediators of acute inflammation but also by regulating gene expression in mesenchymal and epithelial cells at inflammatory site. Such dual actions of prostanoids are frequently seen in immune and allergic reactions, where different type of prostanoids and their receptors often exert opposite actions in a single process. Thus, a new concept on the role of prostanoids in inflammation has arisen from studies using the receptor knockout mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Narumiya S (2007) Physiology and pathophysiology of prostanoid receptors. Proc Japan Acad Ser B 83:296–319

    Article  CAS  Google Scholar 

  2. Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N, Ueno A, Oh-ishi S, Narumiya S (1997) Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388:678–682

    Article  CAS  PubMed  Google Scholar 

  3. Yuhki K, Ueno A, Naraba H, Kojima F, Ushikubi F, Narumiya S, Oh-ishi S (2004) Prostaglandin receptors EP2, EP3, and IP mediate exudate formation in carrageenin-induced mouse pleurisy. J Pharmacol Exp Ther 311:1218–1224

    Article  CAS  PubMed  Google Scholar 

  4. Yuhki K, Ushikubi F, Naraba H, Ueno A, Kato H, Kojima F, Narumiya S, Sugimoto Y, Matsushita M, Oh-Ishi S (2008) Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. J Pharmacol Exp Ther 325:601–609

    Article  CAS  PubMed  Google Scholar 

  5. Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T, Hizaki H, Tuboi K, Katsuyama M, Ichikawa A, Tanaka T, Yoshida N, Narumiya S (1998) Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395:281–284

    Article  CAS  PubMed  Google Scholar 

  6. Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB, Saper CB (2007) EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10:1131–1133

    Article  CAS  PubMed  Google Scholar 

  7. Ueno A, Matsumoto H, Naraba H, Ikeda Y, Ushikubi F, Matsuoka T, Narumiya S, Sugimoto Y, Ichikawa A, Oh-ishi S (2001) Major roles of prostanoid receptors IP and EP3 in endotoxin-induced enhancement of pain perception. Biochem Pharmacol 62:157–160

    Article  CAS  PubMed  Google Scholar 

  8. Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3

    Article  PubMed  Google Scholar 

  9. Lin CR, Amaya F, Barrett L, Wang H, Takada J, Samad TA, Woolf CJ (2006) Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J Pharmacol Exp Ther 319:1096–1103

    Article  CAS  PubMed  Google Scholar 

  10. Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU (2002) PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci 5:34–40

    Article  CAS  PubMed  Google Scholar 

  11. Reinold H, Ahmadi S, Depner UB, Layh B, Heindl C, Hamza M, Pahl A, Brune K, Narumiya S, Müller U, Zeilhofer HU (2005) Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype. J Clin Invest 115:673–679

    CAS  PubMed  Google Scholar 

  12. Honda T, Segi-Nishida E, Miyachi Y, Narumiya S (2005) Prostacyclin-IP signaling and prostaglandin E2–EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J Exp Med 203:325–335

    Article  Google Scholar 

  13. Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, Tsuboi K, Sugimoto Y, Kobayashi T, Miyachi Y, Ichikawa A, Narumiya S (2002) The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest 109:883–893

    CAS  PubMed  Google Scholar 

  14. Bjarnason I, Hayllar J, MacPherson AJ, Russell AS (1993) Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104:1832–1847

    CAS  PubMed  Google Scholar 

  15. Morteau O, Morham SG, Sellon R, Dieleman LA, Langenbach R, Smithies O, Sartor RB (2000) Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J Clin Invest 105:469–478

    Article  CAS  PubMed  Google Scholar 

  16. Lewis RA, Austen KF (1981) Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature 293:103–108

    Article  CAS  PubMed  Google Scholar 

  17. O'Sullivan S (1999) On the role of PGD2 metabolites as markers of mast cell activation in asthma. Acta Physiol Scand Suppl. 644:1–74

    PubMed  Google Scholar 

  18. Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y, Eguchi N, Urade Y, Yoshida N, Kimura K, Mizoguchi A, Honda Y, Nagai H, Narumiya S (2000) Prostaglandin D2 as a mediator of allergic asthma. Science 287:2013–2017

    Article  CAS  PubMed  Google Scholar 

  19. Oguma T, Palmer LJ, Birben E, Sonna LA, Asano K, Lilly CM (2004) Role of prostanoid DP receptor variants in susceptibility to asthma. N Engl J Med 351:1752–1763

    Article  CAS  PubMed  Google Scholar 

  20. Szczeklik A, Stevenson DD (2003) Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol 111:913–921

    Article  CAS  PubMed  Google Scholar 

  21. Raud J, Dahlén SE, Sydbom A, Lindbom L, Hedqvist P (1988) Enhancement of acute allergic inflammation by indomethacin is reversed by prostaglandin E2: apparent correlation with in vivo modulation of mediator release. Proc Natl Acad Sci U S A 85:2315–2319

    Article  CAS  PubMed  Google Scholar 

  22. Kunikata T, Yamane H, Segi E, Matsuoka T, Sugimoto Y, Tanaka S, Tanaka H, Nagai H, Ichikawa A, Narumiya S (2005) Suppression of allergic inflammation by the prostaglandin E receptor subtype EP3. Nat Immunol 6:524–531

    Article  CAS  PubMed  Google Scholar 

  23. Ueta M, Matsuoka T, Narumiya S, Kinoshita S (2009) Prostaglandin E receptor subtype EP3 in conjunctival epithelium regulates late-phase reaction of experimental allergic conjunctivitis. J Allergy Clin Immunol 123:466–471

    Article  CAS  PubMed  Google Scholar 

  24. Honda T, Matsuoka T, Ueta M, Kabashima K, Miyachi Y, Narumiya S (2009) Prostaglandin E2–EP3 signaling suppresses skin inflammation in mouse contact hypersensitivity. J Allergy Clin Immunol (in press) doi:10.1016/j.jaci.2009.04.029

  25. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, Nagata K (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261

    Article  CAS  PubMed  Google Scholar 

  26. Spik I, Brenuchon C, Angeli V, Staumont D, Fleury S, Capron M, Trottein F, Dombrowicz D (2005) Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 174:3703–3708

    CAS  PubMed  Google Scholar 

  27. Shiraishi Y, Asano K, Nakajima T, Oguma T, Suzuki Y, Shiomi T, Sayama K, Niimi K, Wakaki M, Kagyo J, Ikeda E, Hirai H, Yamaguchi K, Ishizaka A (2005) Prostaglandin D2-induced eosinophilic airway inflammation is mediated by CRTH2 receptor. J Pharmacol Exp Ther 312:954–960

    Article  CAS  PubMed  Google Scholar 

  28. Satoh T, Moroi R, Aritake K, Urade Y, Kanai Y, Sumi K, Yokozeki H, Hirai H, Nagata K, Hara T, Utsuyama M, Hirokawa K, Sugamura K, Nishioka K, Nakamura M (2006) Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol 177:2621–2629

    CAS  PubMed  Google Scholar 

  29. Chevalier E, Stock J, Fisher T, Dupont M, Fric M, Fargeau H, Leport M, Soler S, Fabien S, Pruniaux MP, Fink M, Bertrand CP, McNeish J, Li B (2005) Cutting edge: chemoattractant receptor-homologous molecule expressed on Th2 cells plays a restricting role on IL-5 production and eosinophil recruitment. J. Immunol 175:2056–2060

    CAS  PubMed  Google Scholar 

  30. Takahashi Y, Tokuoka S, Masuda T, Hirano Y, Nagao M, Tanaka H, Inagaki N, Narumiya S, Nagai H (2002) Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br J Pharmacol 137:315–322

    Article  CAS  PubMed  Google Scholar 

  31. Steinman L (2007) A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13:139–145

    Article  CAS  PubMed  Google Scholar 

  32. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  33. Steinman L (2008) A rush to judgment on Th17. J Exp Med 205:1517–1522

    Article  CAS  PubMed  Google Scholar 

  34. Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146:108–113

    CAS  PubMed  Google Scholar 

  35. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23:144–150

    Article  CAS  PubMed  Google Scholar 

  36. Nataraj C, Thomas DW, Tilley SL, Nguyen MT, Mannon R, Koller BH, Coffman TM (2001) Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse. J. Clin. Invest 108:1229–1235

    CAS  PubMed  Google Scholar 

  37. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, Sugimoto Y, Narumiya S (2009) Prostaglandin E2–EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nat Med 15:633–640

    Article  CAS  PubMed  Google Scholar 

  38. Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM, DuBois RN (2006) Role of β-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci U S A 103:1492–1497

    Article  CAS  PubMed  Google Scholar 

  39. Sheibanie AF, Yen JH, Khayrullina T, Emig F, Zhang M, Tuma R, Ganea D (2007) The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23–>IL-17 axis. J Immunol 178:8138–8147

    CAS  PubMed  Google Scholar 

  40. Khayrullina T, Yen JH, Jing H, Ganea D (2008) In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J Immunol 181:721–735

    CAS  PubMed  Google Scholar 

  41. Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, McKenzie BS, Kastelein RA, Cua DJ, de Waal Malefyt R (2009) Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 206:535–548

    Article  CAS  PubMed  Google Scholar 

  42. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, de Vos M, Dixon A, Demarche B, Gut I, Heath S, Foglio M, Liang L, Laukens D, Mni M, Zelenika D, Van Gossum A, Rutgeerts P, Belaiche J, Lathrop M, Georges M (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 20:e58

    Article  Google Scholar 

  43. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    Article  CAS  PubMed  Google Scholar 

  44. Neurath MF (2007) IL-23: a master regulator in Crohn disease. Nat Med 13:26–28

    Article  CAS  PubMed  Google Scholar 

  45. Kabashima K, Sakata D, Nagamachi M, Miyachi Y, Inaba K, Narumiya S (2003) Prostaglandin E2–EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat Med 9:744–749

    Article  CAS  PubMed  Google Scholar 

  46. Hervé M, Angeli V, Pinzar E, Wintjens R, Faveeuw C, Narumiya S, Capron A, Urade Y, Capron M, Riveau G, Trottein F (2003) Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion. Eur J Immunol 33:2764–2772

    Article  PubMed  Google Scholar 

  47. Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N, Katagiri K, Kinashi T, Tanaka T, Miyasaka M, Nagai H, Ushikubi F, Narumiya S (2003) Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol 4:694–701

    Article  CAS  PubMed  Google Scholar 

  48. Nagamachi M, Sakata D, Kabashima K, Furuyashiki T, Murata T, Segi-Nishida E, Soontrapa K, Matsuoka T, Miyachi Y, Narumiya S (2007) Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. J Exp Med 204:2865–2874

    Article  CAS  PubMed  Google Scholar 

  49. Grabbe S, Schwarz T (1998) Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 19:37–44

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

The author declares that his research on prostanoid receptors has been supported in part by Ono Pharmaceuticals Co. Ltd. through collaboration with Kyoto University. Ono Pharmaceuticals Co. Ltd. has developed compounds discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuh Narumiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narumiya, S. Prostanoids and inflammation: a new concept arising from receptor knockout mice. J Mol Med 87, 1015–1022 (2009). https://doi.org/10.1007/s00109-009-0500-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0500-1

Keywords

Navigation