Skip to main content
Log in

Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The wound healing response after myocardial infarction (MI) involves a cascade of molecular and cellular events that lead to a replacement of the necrotic area with a collagen-rich scar. Clearance of necrotic debris by neutrophils, monocytes, and macrophages is a critical component of infarct healing; however, tight control and timely repression of this inflammatory response is important to prevent excessive tissue degradation leading to infarct expansion and heart failure. Genetic ablation or blockade of anti-inflammatory pathways tends to be detrimental after MI, whereas genetic ablation of pro-inflammatory pathways tends to be beneficial. Accordingly, therapies enhancing endogenous anti-inflammatory pathways or blocking endogenous pro-inflammatory pathways have been found to improve wound healing and to reduce the risk of heart failure in rodent models of acute MI. Besides their scavenger function, inflammatory cells promote healing by stimulating angiogenesis and granulation tissue formation via paracrine factors. Moreover, signaling mediators that are active in inflammatory cells may be active also in non-inflammatory cell types involved in infarct healing. Some anti-inflammatory interventions are therefore deleterious. However, interventions that carefully adjust the balance between the essential and detrimental facets of inflammation may provide new therapeutic opportunities for patients with large MIs who continue to be at risk of developing heart failure, despite modern reperfusion and anti-remodeling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Velagaleti RS, Pencina MJ, Murabito JM, Wang TJ, Parikh NI, D'Agostino RB, Levy D, Kannel WB, Vasan RS (2008) Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118:2057–2062

    Article  PubMed  Google Scholar 

  2. Arslan F, de Kleijn DP, Pasterkamp G (2011) Innate immune signaling in cardiac ischemia. Nat Rev Cardiol 8:292–300

    Article  PubMed  CAS  Google Scholar 

  3. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion-from mechanism to translation. Nat Med 17:1391–1401

    Article  PubMed  CAS  Google Scholar 

  4. Wrigley BJ, Lip GY, Shantsila E (2011) The role of monocytes and inflammation in the pathophysiology of heart failure. Eur J Heart Fail 13:1161–1171

    Article  PubMed  CAS  Google Scholar 

  5. Dirksen MT, Laarman GJ, Simoons ML, Duncker DJ (2007) Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovasc Res 74:343–355

    Article  PubMed  CAS  Google Scholar 

  6. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  PubMed  CAS  Google Scholar 

  7. Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129

    Article  PubMed  CAS  Google Scholar 

  8. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111

    Article  PubMed  CAS  Google Scholar 

  9. Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML (1979) Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. N Engl J Med 300:57–62

    Article  PubMed  CAS  Google Scholar 

  10. Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E, Bax JJ, Nagel E (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54:1770–1777

    Article  PubMed  Google Scholar 

  11. Gao XM, Xu Q, Kiriazis H, Dart AM, Du XJ (2005) Mouse model of post-infarct ventricular rupture: time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovasc Res 65:469–477

    Article  PubMed  CAS  Google Scholar 

  12. van den Borne SW, van de Schans VA, Strzelecka AE, Vervoort-Peters HT, Lijnen PM, Cleutjens JP, Smits JF, Daemen MJ, Janssen BJ, Blankesteijn WM (2009) Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84:273–282

    Article  PubMed  Google Scholar 

  13. Figueras J, Barrabes JA, Serra V, Cortadellas J, Lidon RM, Carrizo A, Garcia-Dorado D (2010) Hospital outcome of moderate to severe pericardial effusion complicating ST-elevation acute myocardial infarction. Circulation 122:1902–1909

    Article  PubMed  Google Scholar 

  14. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  PubMed  CAS  Google Scholar 

  15. Matsumura S, Iwanaga S, Mochizuki S, Okamoto H, Ogawa S, Okada Y (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115:599–609

    PubMed  CAS  Google Scholar 

  16. van den Borne SW, Cleutjens JP, Hanemaaijer R, Creemers EE, Smits JF, Daemen MJ, Blankesteijn WM (2009) Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol 18:37–43

    Article  PubMed  Google Scholar 

  17. Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T (2002) Targeted deletion of angiotensin II type 2 receptor caused cardiac rupture after acute myocardial infarction. Circulation 106:2244–2249

    Article  PubMed  CAS  Google Scholar 

  18. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S et al (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303

    Article  PubMed  CAS  Google Scholar 

  19. Westermann D, Mersmann J, Melchior A, Freudenberger T, Petrik C, Schaefer L, Lullmann-Rauch R, Lettau O, Jacoby C, Schrader J et al (2008) Biglycan is required for adaptive remodeling after myocardial infarction. Circulation 117:1269–1276

    Article  PubMed  CAS  Google Scholar 

  20. Schellings MW, Vanhoutte D, Swinnen M, Cleutjens JP, Debets J, van Leeuwen RE, d'Hooge J, Van de Werf F, Carmeliet P, Pinto YM et al (2009) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206:113–123

    Article  PubMed  CAS  Google Scholar 

  21. Matsui Y, Ikesue M, Danzaki K, Morimoto J, Sato M, Tanaka S, Kojima T, Tsutsui H, Uede T (2011) Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circ Res 108:1328–1339

    Article  PubMed  CAS  Google Scholar 

  22. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37

    Article  PubMed  Google Scholar 

  23. Vanhoutte D, Schellings MW, Gotte M, Swinnen M, Herias V, Wild MK, Vestweber D, Chorianopoulos E, Cortes V, Rigotti A et al (2007) Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation 115:475–482

    Article  PubMed  CAS  Google Scholar 

  24. Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J, Entman ML (2005) Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111:2935–2942

    Article  PubMed  CAS  Google Scholar 

  25. Bulkley BH, Roberts WC (1974) Steroid therapy during acute myocardial infarction. A cause of delayed healing and of ventricular aneurysm. Am J Med 56:244–250

    Article  PubMed  CAS  Google Scholar 

  26. Roberts R, DeMello V, Sobel BE (1976) Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation 53:I204–I206

    PubMed  CAS  Google Scholar 

  27. Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, Verma S, Weisel RD, Keating A, Li RK (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116:1865–1877

    Article  PubMed  CAS  Google Scholar 

  28. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  PubMed  CAS  Google Scholar 

  29. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T, Ito A, Misener S, Tanaka T, Klyachko E et al (2010) CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci USA 107:11008–11013

    Article  PubMed  CAS  Google Scholar 

  30. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445

    Article  PubMed  Google Scholar 

  31. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, Kitabata H, Okochi K, Arita Y, Ishibashi K et al (2009) Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54:130–138

    Article  PubMed  Google Scholar 

  32. Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55:1629–1638

    Article  PubMed  Google Scholar 

  33. Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y et al (2010) Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 107:1364–1373

    Article  PubMed  CAS  Google Scholar 

  34. Fraccarollo D, Galuppo P, Schraut S, Kneitz S, van Rooijen N, Ertl G, Bauersachs J (2008) Immediate mineralocorticoid receptor blockade improves myocardial infarct healing by modulation of the inflammatory response. Hypertension 51:905–914

    Article  PubMed  CAS  Google Scholar 

  35. Harel-Adar T, Ben Mordechai T, Amsalem Y, Feinberg MS, Leor J, Cohen S (2011) Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci USA 108:1827–1832

    Article  PubMed  CAS  Google Scholar 

  36. Curato C, Slavic S, Dong J, Skorska A, Altarche-Xifro W, Miteva K, Kaschina E, Thiel A, Imboden H, Wang J et al (2010) Identification of noncytotoxic and IL-10-producing CD8 + AT2R + T cell population in response to ischemic heart injury. J Immunol 185:6286–6293

    Article  PubMed  CAS  Google Scholar 

  37. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG (2010) CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol 176:2177–2187

    Article  PubMed  CAS  Google Scholar 

  38. Zymek P, Nah DY, Bujak M, Ren G, Koerting A, Leucker T, Huebener P, Taffet G, Entman M, Frangogiannis NG (2007) Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc Res 74:313–322

    Article  PubMed  CAS  Google Scholar 

  39. Krishnamurthy P, Lambers E, Verma S, Thorne T, Qin G, Losordo DW, Kishore R (2010) Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. FASEB J 24:2484–2494

    Article  PubMed  CAS  Google Scholar 

  40. Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R (2009) IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104:e9–e18

    Article  PubMed  CAS  Google Scholar 

  41. Barandon L, Casassus F, Leroux L, Moreau C, Allieres C, Lamaziere JM, Dufourcq P, Couffinhal T, Duplaa C (2011) Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscler Thromb Vasc Biol 31:e80–e87

    Article  PubMed  CAS  Google Scholar 

  42. Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF, Blankesteijn WM (2011) Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124:1626–1635

    Article  PubMed  CAS  Google Scholar 

  43. Bujak M, Dobaczewski M, Gonzalez-Quesada C, Xia Y, Leucker T, Zymek P, Veeranna V, Tager AM, Luster AD, Frangogiannis NG (2009) Induction of the CXC chemokine interferon-γ-inducible protein 10 regulates the reparative response following myocardial infarction. Circ Res 105:973–983

    Article  PubMed  CAS  Google Scholar 

  44. Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, Kubota T, Takeshita A (2004) Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 64:526–535

    Article  PubMed  CAS  Google Scholar 

  45. Bujak M, Frangogiannis NG (2007) The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  PubMed  CAS  Google Scholar 

  46. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, Bolomini-Vittori M, Korf-Klingebiel M, Napp LC, Hansen B et al (2011) GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17:581–588

    Article  PubMed  CAS  Google Scholar 

  47. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, Heineke J, Kotlarz D, Xu J, Molkentin JD et al (2006) The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98:351–360

    Article  PubMed  CAS  Google Scholar 

  48. Puri KD, Doggett TA, Huang CY, Douangpanya J, Hayflick JS, Turner M, Penninger J, Diacovo TG (2005) The role of endothelial PI3Kγ activity in neutrophil trafficking. Blood 106:150–157

    Article  PubMed  CAS  Google Scholar 

  49. Hirsch E, Ciraolo E, Ghigo A, Costa C (2008) Taming the PI3K team to hold inflammation and cancer at bay. Pharmacol Ther 118:192–205

    Article  PubMed  CAS  Google Scholar 

  50. Siragusa M, Katare R, Meloni M, Damilano F, Hirsch E, Emanueli C, Madeddu P (2010) Involvement of phosphoinositide 3-kinase γ in angiogenesis and healing of experimental myocardial infarction in mice. Circ Res 106:757–768

    Article  PubMed  CAS  Google Scholar 

  51. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, Michael LH, Rollins BJ, Entman ML, Frangogiannis NG (2005) CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96:881–889

    Article  PubMed  CAS  Google Scholar 

  52. Hayashidani S, Tsutsui H, Shiomi T, Ikeuchi M, Matsusaka H, Suematsu N, Wen J, Egashira K, Takeshita A (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 108:2134–2140

    Article  PubMed  CAS  Google Scholar 

  53. Liehn EA, Piccinini AM, Koenen RR, Soehnlein O, Adage T, Fatu R, Curaj A, Popescu A, Zernecke A, Kungl AJ et al (2010) A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice. J Am Coll Cardiol 56:1847–1857

    Article  PubMed  CAS  Google Scholar 

  54. Timmers L, Sluijter JP, van Keulen JK, Hoefer IE, Nederhoff MG, Goumans MJ, Doevendans PA, van Echteld CJ, Joles JA, Quax PH et al (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102:257–264

    Article  PubMed  CAS  Google Scholar 

  55. Barochia A, Solomon S, Cui X, Natanson C, Eichacker PQ (2011) Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin Drug Metab Toxicol 7:479–494

    Article  PubMed  CAS  Google Scholar 

  56. Maekawa Y, Mizue N, Chan A, Shi Y, Liu Y, Dawood S, Chen M, Dawood F, de Couto G, Li GH et al (2009) Survival and cardiac remodeling after myocardial infarction are critically dependent on the host innate immune interleukin-1 receptor-associated kinase-4 signaling: a regulator of bone marrow-derived dendritic cells. Circulation 120:1401–1414

    Article  PubMed  CAS  Google Scholar 

  57. Arslan F, Smeets MB, Riem Vis PW, Karper JC, Quax PH, Bongartz LG, Peters JH, Hoefer IE, Doevendans PA, Pasterkamp G et al (2011) Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res 108:582–592

    Article  PubMed  CAS  Google Scholar 

  58. Kohno T, Anzai T, Naito K, Miyasho T, Okamoto M, Yokota H, Yamada S, Maekawa Y, Takahashi T, Yoshikawa T et al (2009) Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res 81:565–573

    Article  PubMed  CAS  Google Scholar 

  59. Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nature Reviews Cardiol 7:204–215

    Article  Google Scholar 

  60. Burchfield JS, Iwasaki M, Koyanagi M, Urbich C, Rosenthal N, Zeiher AM, Dimmeler S (2008) Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ Res 103:203–211

    Article  PubMed  CAS  Google Scholar 

  61. Iyer SS, Rojas M (2008) Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther 8:569–581

    Article  PubMed  CAS  Google Scholar 

  62. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63

    Article  PubMed  CAS  Google Scholar 

  63. Wang M, Tan J, Wang Y, Meldrum KK, Dinarello CA, Meldrum DR (2009) IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction. Proc Natl Acad Sci USA 106:17499–17504

    Article  PubMed  CAS  Google Scholar 

  64. Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492

    Article  PubMed  Google Scholar 

  65. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A et al (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6:206–214

    Article  PubMed  Google Scholar 

  66. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286

    Article  PubMed  CAS  Google Scholar 

  67. Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2:262–271

    Article  PubMed  Google Scholar 

  68. Kim HW, Farzaneh-Far A, Kim RJ (2010) Cardiovascular magnetic resonance in patients with myocardial infarction. J Am Coll Cardiol 55:1–16

    Article  Google Scholar 

Download references

Acknowledgement

K.C.W. is supported by the German Research Foundation.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai C. Wollert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempf, T., Zarbock, A., Vestweber, D. et al. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J Mol Med 90, 361–369 (2012). https://doi.org/10.1007/s00109-011-0847-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0847-y

Keywords

Navigation