Skip to main content

Advertisement

Log in

High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Utilizing a polymorphism ratio sequencing platform, we performed a complete somatic mutation analysis of the mitochondrial D-loop region in 14 urothelial cell carcinomas. A total of 28 somatic mutations, all heteroplasmic, were detected in 8 of 14 individuals (57.1 %). Insertion/deletion changes in unstable mono- and dinucleotide repeat segments comprise the most pervasive class of mutations (9 of 28), while two recurring single-base substitution loci were identified. Seven variants, mostly insertion/deletions, represent population shifts from a heteroplasmic germline toward dominance in the tumor. In four cases, DNA from matched urine samples was similarly analyzed, with all somatic variants present in associated tumors readily detectable in the bodily fluid. Consistent with previous findings, mutant populations in urine were similar to those detected in tumor and in three of four cases were more prominent in urine.

Key messages

  • PRS accurately detects high mtDNA mutations in UCCs and their body fluids.

  • mtDNA mutations are universally heteroplasmic and often appear at low levels.

  • The PRS technology could be a viable approach to develop mitochondrial biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  3. Chatterjee A, Dasgupta S, Sidransky D (2011) Mitochondrial subversion in cancer. Can Prev Res 4:638–654

    Article  CAS  Google Scholar 

  4. Dasgupta S, Hoque MO, Upadhyay S, Sidransky D (2008) Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Res 68:700–706

    Article  CAS  PubMed  Google Scholar 

  5. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664

    Article  CAS  PubMed  Google Scholar 

  6. Dasgupta S, Soudry E, Mukhopadhyay N, Shao C, Yee J, Lam S, Lam W, Zhang W, Gazdar AF, Fisher PB et al (2012) Mitochondrial DNA mutations in respiratory complex-I in never-smoker lung cancer patients contribute to lung cancer progression and associated with EGFR gene mutation. J Cell Physiol 227:2451–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:357–407

    Article  Google Scholar 

  8. Kujoth GC, Leeuwenburgh C, Prolla TA (2006) Mitochondrial DNA mutations and apoptosis in mammalian aging. Cancer Res 66:7386–7389

    Article  CAS  PubMed  Google Scholar 

  9. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    Article  CAS  PubMed  Google Scholar 

  10. Blazej RG, Paegel BM, Mathies RA (2003) Polymorphism ratio sequencing: a new approach for single nucleotide polymorphism discovery and genotyping. Genome Res 13:287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. www.cancer.gov. Data accessed 11 November 2015

  12. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019

    Article  CAS  PubMed  Google Scholar 

  13. Dasgupta S, Shao C, Keane TE, Duberow DP, Mathies RA, Fisher PB, Kiemeney LA, Sidransky D (2012) Detection of mitochondrial DNA alterations in urine from urothelial cell carcinoma patients. Int J Cancer 131:158–164

    Article  CAS  PubMed  Google Scholar 

  14. Simpson PC, Roach D, Woolley AT, Thorsen T, Johnston R, Sensabaugh GF, Mathies RA (1998) High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc Natl Acad Sci USA 95:2256–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paegel BM, Emrich CA, Wedemayer GJ, Scherer JR, Mathies RA (2002) High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci USA 99:574–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woolley AT, Sensabaugh GF, Mathies RA (1997) High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. Anal Chem 169:2181–2186

    Article  Google Scholar 

  17. Mithani SK, Taube JM, Zhou S, Smith IM, Koch WM, Westra WH, Califano JA (2007) Mitochondrial mutations are a late event in the progression of head and neck squamous cell cancer. Clin Cancer Res 13:4331–4335

    Article  CAS  PubMed  Google Scholar 

  18. Hoque MO, Lee J, Begum S, Yamashita K, Engles JM, Schoenberg M, Westra WH, Sidransky D (2003) High-throughput molecular analysis of urine sediment for the detection of bladder cancer by high-density single-nucleotide polymorphism array. Cancer Res 63:5723–5726

    CAS  PubMed  Google Scholar 

  19. Rieder MJ, Taylor SL, Tobe VO, Nickerson DA (1998) Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res 26:967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ju J, Ruan C, Fuller CW, Glazer AN, Mathies RA (1995) Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc Natl Acad Sci USA 92:4347–4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hjertén S (1985) High-performance electrophoresis: elimination of electroendosmosis and solute adsorption. J Chromatog 347:191–198

    Article  Google Scholar 

  22. Scherer JR, Paegel BM, Wedemayer GJ, Emrich CA, Lo J, Medintz IL, Mathies RA (2001) High-pressure gel loader for capillary array electrophoresis microchannel plates. Biotechniques 31:1150–1152

    CAS  PubMed  Google Scholar 

  23. Shi Y, Simpson PC, Scherer JR, Wexler D, Skibola C, Smith MT, Mathies RA (1999) Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal Chem 71:5354–5361

    Article  CAS  PubMed  Google Scholar 

  24. Woolley AT, Hadley D, Landre P, deMello AJ, Mathies RA, Northrup MA (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem 68:4081–4086

    Article  CAS  PubMed  Google Scholar 

  25. Thaitrong N, Toriello NM, Del Bueno N, Mathies RA (2009) Polymerase chain reaction-capillary electrophoresis genetic analysis microdevice with in-line affinity capture sample injection. Anal Chem 81:1371–1377

    Article  CAS  PubMed  Google Scholar 

  26. Toriello NM, Liu CN, Blazej RG, Thaitrong N, Mathies RA (2007) Integrated affinity capture, purification, and capillary electrophoresis microdevice for quantitative double-stranded DNA analysis. Anal Chem 79:8549–8556

    Article  CAS  PubMed  Google Scholar 

  27. Emrich CA, Tian H, Medintz IL, Mathies RA (2002) Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 74:5076–5083

    Article  CAS  PubMed  Google Scholar 

  28. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35(Database issue):D823–D828, http://www.mitomap.org/

    Article  CAS  PubMed  Google Scholar 

  29. Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, Sitbon G, Lundeberg J (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    Article  CAS  PubMed  Google Scholar 

  31. Sun W, Zhou S, Chang SS, McFate T, Verma A, Califano JA (2009) Mitochondrial mutations contribute to HIF1α accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma. Clin Cancer Res 15:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou S, Kachhap S, Sun W, Wu G, Chuang A, Poeta L, Grumbine L, Mithani SK, Chatterjee A, Koch W et al (2007) Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proc Natl Acad Sci USA 104:7540–7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tan DJ, Bai RK, Wong LJC (2002) Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62:972–976

    CAS  PubMed  Google Scholar 

  34. Nagy A, Wilhelm M, Sükösd F, Ljungberg B, Kovacs G (2002) Somatic mitochondrial DNA mutations in human chromophobe renal cell carcinomas. Genes Chromosomes Cancer 35:256–260

    Article  CAS  PubMed  Google Scholar 

  35. Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291–293

    Article  CAS  PubMed  Google Scholar 

  36. Hibi K, Nakayama H, Yamazaki T, Takase T, Taguchi M, Kasai Y, Ito K, Akiyama S, Nakao A (2001) Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer 94:429–431

    Article  CAS  PubMed  Google Scholar 

  37. Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE (2001) Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res 61:1299–1304

    CAS  PubMed  Google Scholar 

  38. Wong LJC, Lueth M, Li XN, Lau CC, Vogel H (2003) Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res 63:3866–3871

    CAS  PubMed  Google Scholar 

  39. Jakupciak JP, Wang W, Markowitz ME, Ally D, Coble M, Srivastava S, Maitra A, Barker PE, Sidransky D, O’Connell CD (2005) Mitochondrial DNA as a cancer biomarker. J Mol Diagn 7:258–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P, Wong LC, Ngan HY (2001) High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res 61:5998–6001

    CAS  PubMed  Google Scholar 

  41. Mithani SK, Smith IM, Topalian SL, Califano JA (2008) Nonsynonymous somatic mitochondrial mutations occur in the majority of cutaneous melanomas. Melanoma Res 18:214–219

    Article  CAS  PubMed  Google Scholar 

  42. Philley JV, Kannan A, Qin W, Sauter ER, Ikebe M, Hertweck KL, Troyer DA, Semmes OJ, Dasgupta S (2016) Complex-I alteration and enhanced mitochondrial fusion are associated with prostate cancer progression. J Cell Physiol 231:1364–1374

    Article  CAS  PubMed  Google Scholar 

  43. Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salas A, Yao YG, Macaulay V, Vega A, Carracedo A, Bandelt HJ (2005) A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2:e296

    Article  PubMed  PubMed Central  Google Scholar 

  45. Blazej RG, Kumaresan P, Mathies RA (2006) Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc Natl Acad Sci USA 103:7240–7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blazej RG, Kumaresan P, Cronier SA, Mathies RA (2007) Inline injection microdevice for attomole-scale Sanger DNA sequencing. Anal Chem 79:4499–4506

    Article  CAS  PubMed  Google Scholar 

  47. Kumaresan P, Yang CJ, Cronier SA, Blazej RG, Mathies RA (2008) High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80:3522–3529

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Nadia Del Bueno, Samantha Cronier, Numrin Thaitrong, Jim Scherer, Peng Liu, and Kanwar Singh for valuable consultation. The involvement of Jing Yi and Terry Speed from the UC Berkeley Statistics Department was central to the design of the automated PRS analysis software. Microfabrication was performed by Eric Chu at the UC Berkeley Microlab. This work was supported by NIH grants #HG03329, #CA77664, and #CA075115 (R.A.M.) and the University of Texas Health Science Center at Tyler, Texas (S.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santanu Dasgupta or Richard A. Mathies.

Ethics declarations

Author contribution

R.A.M., S.D., and D.S. designed the experiments. D.P.D. and M.B. performed research. R.A.M., S.D., D.S., M.O.H., D.P.D., and D.T. analyzed the data and provided materials. R.A.M., S.D., and D.S. designed the project, supervised research. R.A.M., S.D., D.S., M.O.H., D.P.D., D.T., and M.B. wrote the paper.

Conflict of interest statement

R.A.M. has a financial interest in a company (IntegenX Inc.) working on the commercialization of microchip sequencing technologies that may benefit from the results of this research. Others have declared no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duberow, D.P., Brait, M., Hoque, M.O. et al. High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing. J Mol Med 94, 1015–1024 (2016). https://doi.org/10.1007/s00109-016-1407-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1407-2

Keywords

Navigation