Skip to main content
Log in

Tuberkulose

Pathogenese und Wertigkeit immundiagnostischer Tests

Tuberculosis

Pathogenesis and efficacy of immunodiagnostic methods

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Tuberkulose – verursacht durch Erreger des Mycobacterium-tuberculosis-Komplexes – ist eine in Deutschland heute selten auftretende Infektionserkrankung. Nach einem kontinuierlichen Rückgang der Fälle über die letzten Jahrzehnte erreichte ihre Inzidenz einen stabil niedrigen Stand. Für den Haus- oder Kinderarzt wurde daher der Umgang mit Erkrankungs- und Kontaktfällen zu einem eher außergewöhnlichen Ereignis. Das ist problematisch, da die Tuberkulose weltweit weiterhin zu den häufigsten und lebensgefährlichsten Infektionserkrankungen zählt und durch das vermehrte Auftreten therapieresistenter Mykobakterien noch an Bedeutung gewinnt.

Diagnostik

Die Diagnose der Tuberkulose bei Kindern ist aufgrund der häufig uneindeutigen Symptomatik schwierig, und der sinnvolle Einsatz von immundiagnostischen, bildgebenden und Erregernachweisverfahren ist für die erfolgreiche Therapie grundlegend.

Ziel des Beitrags

Dieser Beitrag soll einen Überblick über die verfügbaren immunologischen Methoden geben und deren Wertigkeit für die Diagnostik einordnen. Anhand aktueller Erkenntnisse zur Pathogenese der Tuberkulose und der latenten Mycobacterium-tuberculosis-Infektion werden neue Ansätze für die Diagnostik und die Identifizierung von Biomarkern aufgezeigt.

Abstract

Background

Childhood tuberculosis is a chronic infectious disease caused by pathogenic bacteria of the Mycobacterium tuberculosis complex genus. Tuberculosis has become rare in most developed countries during recent decades. In contrast, according to worldwide incidence rates, tuberculosis is still among the most frequent and deadly infectious diseases. In Germany, ‘imported’ tuberculosis cases from countries with high disease incidence are important, but the majority of cases occur in children born in Germany. Low case frequencies as well as lost knowledge about tuberculosis symptoms and diagnosis pose the hazard of nonobservance.

Diagnosis

Diagnosis of tuberculosis in childhood is particularly difficult because of often unclear symptomatology. Therefore, reasonable usage of available tools (i.e., immunodiagnostics, imaging techniques, pathogen detection) is crucial for diagnosis.

Aim of this article

This review focuses on immunodiagnostic methods and discusses limitations of available tests. Finally, it summarizes how recent scientific findings on tuberculosis pathogenesis and latent Mycobacterium tuberculosis infection may lead to novel diagnostic approaches and predictive biomarkers for tuberculosis treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Chiappini E, Accetta G, Bonsignori F et al (2012) Interferon-gamma release assays for the diagnosis of Mycobacterium tuberculosis infection in children: a systematic review and meta-analysis. Int J Immunopathol Pharmacol 25(3):557–564

    PubMed  CAS  Google Scholar 

  2. Darrah PA, Patel DT, De Luca PM et al (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13(7):843–850

    Article  PubMed  CAS  Google Scholar 

  3. Day CL, Abrahams DA, Lerumo L et al (2011) Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol 187(5):2222–2232

    Article  PubMed  CAS  Google Scholar 

  4. Delgado JC, Tsai EY, Thim S et al (2002) Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia. Proc Natl Acad Sci USA 99(11):7576–7581

    Article  PubMed  CAS  Google Scholar 

  5. Detjen AK, Magdorf K (2009) Characteristics of childhood tuberculosis. Pneumologie 63(4):207–218

    Article  PubMed  CAS  Google Scholar 

  6. Diel R, Loytved G, Nienhaus A et al (2011) New recommendations for contact tracing in tuberculosis. Gesundheitswesen 73(6):369–388

    Article  PubMed  CAS  Google Scholar 

  7. Feske ML, Medina M, Graviss EA, Lewis DE (2012) IL-7 addition increases spot size and number as measured by T-SPOT.TB (®). Methods Mol Biol 792:229–241

    Article  PubMed  CAS  Google Scholar 

  8. Harari A, Rozot V, Enders FB et al (2011) Dominant TNF-alpha + Mycobacterium tuberculosis-specific CD4 + T cell responses discriminate between latent infection and active disease. Nat Med 17(3):372–376

    Article  PubMed  CAS  Google Scholar 

  9. Jacobsen M, Mattow J, Repsilber D, Kaufmann SH (2008) Novel strategies to identify biomarkers in tuberculosis. Biol Chem 389(5):487–495

    Article  PubMed  CAS  Google Scholar 

  10. Levin M, Newport M (1999) Understanding the genetic basis of susceptibility to mycobacterial infection. Proc Assoc Am Physicians 111(4):308–312

    Article  PubMed  CAS  Google Scholar 

  11. Lin MY, Ottenhoff TH (2008) Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection. Biol Chem 389(5):497–511

    Article  PubMed  CAS  Google Scholar 

  12. Lindenstrom T, Agger EM, Korsholm KS et al (2009) Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 182(12):8047–8055

    Article  PubMed  CAS  Google Scholar 

  13. Pai M, Zwerling A, Menzies D (2008) Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 149(3):177–184

    Article  PubMed  Google Scholar 

  14. Ruhwald M, Aabye MG, Ravn P (2012) IP-10 release assays in the diagnosis of tuberculosis infection: current status and future directions. Expert Rev Mol Diagn 12(2):175–187

    Article  PubMed  CAS  Google Scholar 

  15. Schuck SD, Mueller H, Kunitz F et al (2009) Identification of T-cell antigens specific for latent Mycobacterium tuberculosis infection. PLoS One 4(5):e5590

    Article  PubMed  Google Scholar 

  16. Via LE, Schimel D, Weiner DM et al (2012) Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using [(1)(8)F]2-fluoro-deoxy-D-glucose positron emission tomography and computed tomography. Antimicrob Agents Chemother 56(8):4391–4402

    Article  PubMed  CAS  Google Scholar 

  17. Walzl G, Ronacher K, Hanekom W et al (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11(5):343–354

    Article  PubMed  CAS  Google Scholar 

  18. Wang S, Diao N, Lu C et al (2012) Evaluation of the diagnostic potential of IP-10 and IL-2 as biomarkers for the diagnosis of active and latent tuberculosis in a BCG-vaccinated population. PLoS One 7(12):e51338

    Article  PubMed  CAS  Google Scholar 

  19. Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13(11):908–914

    Article  PubMed  CAS  Google Scholar 

  20. WHO (2012) Tuberculosis (TB). Global tuberculosis report 2012. WHO, Genf. http://www.who.int/tb/publications/global_report/en/. Zugegriffen: 08.06.2013

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jacobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohns, M., Seyfarth, J., Schramm, D. et al. Tuberkulose . Monatsschr Kinderheilkd 161, 697–702 (2013). https://doi.org/10.1007/s00112-013-2882-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-013-2882-y

Schlüsselwörter

Keywords

Navigation