Skip to main content

Advertisement

Log in

The interaction of temperature and sucrose concentration on foraging preferences in bumblebees

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Several authors have found that flowers that are warmer than their surrounding environment have an advantage in attracting pollinators. Bumblebees will forage preferentially on warmer flowers, even if equal nutritional reward is available in cooler flowers. This raises the question of whether warmth and sucrose concentration are processed independently by bees, or whether sweetness detectors respond to higher sugar concentration as well as higher temperature. We find that bumblebees can use lower temperature as a cue to higher sucrose reward, showing that bees appear to process the two parameters strictly independently. Moreover, we demonstrate that sucrose concentration takes precedence over warmth, so that when there is a difference in sucrose concentration, bees will typically choose the sweeter feeder, even if the less sweet feeder is several degrees warmer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartoshuk LM, Rennert K, Rodin J, Stevens JC (1982) Effects of temperature on the perceived sweetness of sucrose. Physiol Behav 28:905–910

    Article  PubMed  CAS  Google Scholar 

  • Bishop JA, Armbruster WS (1999) Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny and ecology. Funct Ecol 13:711–724

    Article  Google Scholar 

  • Blüthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166

    Article  Google Scholar 

  • Chittka L, Geiger K (1995) Honeybee long-distance orientation in a controlled environment. Ethology 99:117–126

    Article  Google Scholar 

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388

    Article  PubMed  CAS  Google Scholar 

  • Comba L, Corbet SA, Hunt H, Outram S, Parker JS, Glover BJ (2000) The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant Cell Environ 23:639–647

    Article  CAS  Google Scholar 

  • Corbet SA (1978) Bee visits and the nectar of Echium vulgare L. and Sinapis alba L.. Ecol Entomol 3:25–27

    Article  Google Scholar 

  • Dyer AG, Chittka L (2004) Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. J Comp Physiol A 190:105–114

    Article  CAS  Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557

    Article  Google Scholar 

  • Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Bees associate warmth with floral colour. Nature 442:525

    Article  PubMed  CAS  Google Scholar 

  • Génotelle J (1978) Expression de la viscosité des solutions sucrées. Ind Aliment Agric 95:747–755

    Google Scholar 

  • Grandi G (1961) The hymenopterous insects of the superfamily Chalcidoidea developing within the receptacles of figs. Boll Ist Entomol Univ Studi Bologna 26:1–3

    Google Scholar 

  • Harder LD (1986) Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia 69:309–315

    Article  Google Scholar 

  • Heinrich B, Esch H (1994) Thermoregulation in bees. Am Sci 82:164–170

    Google Scholar 

  • Heran H (1952) Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z Vgl Physiol 34:179–206

    Article  Google Scholar 

  • Herrera CM (1995) Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology 76:218–228

    Article  Google Scholar 

  • Kevan PG (1975) Sun-tracking solar furnaces in high Arctic flowers: significance for pollination and insects. Science 189:723–726

    Article  PubMed  Google Scholar 

  • Kevan PG (1976) Fluorescent nectar. Science 194:341–342

    Article  PubMed  Google Scholar 

  • Kevan PG (1989) Thermoregulation in arctic insects and flowers: Adaptation and co-adaptation in behaviour, anatomy, and physiology. In: Mercer, J (eds) Thermal physiology. Elsevier (Biomedical Division), Amsterdam, pp 747–753

    Google Scholar 

  • Lacher V (1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifica L.). Z Vgl Physiol 48:587–623

    Article  Google Scholar 

  • Menzel R, Chittka L, Eichmüller S, Geiger K, Peitsch D, Knoll P (1990) Dominance of celestial cues over landmarks disproves map-like orientation in honey bees. Z Naturforsch 45c:723–726

    Google Scholar 

  • Mojet J, Köster EP, Prinz JF (2005) Do tastants have a smell. Chem Senses 30:9–21

    Article  PubMed  CAS  Google Scholar 

  • Nieh JC, Leon A, Cameron S, Vandame R (2006) Hot bumble bees at good food: thoracic temperature of feeding Bombus wilmattae foragers is tuned to sugar concentration. J Exp Biol 209:4185–4192

    Article  PubMed  CAS  Google Scholar 

  • Pye D (in press) To add another hue unto the rainbow—near ultraviolet in nature. Optics and Laser Technology

  • Rands SA, Whitney HM (2008). Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators? PLoS ONE 3(4):e2007. DOI 10.1371/journal.pone.0002007

  • Saleh N, Scott AG, Bryning GP, Chittka L (2007) Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interact 1:119–127

    Article  Google Scholar 

  • Sapir Y, Shmida A, Ne΄eman G (2006) Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147:53–59

    Article  PubMed  Google Scholar 

  • Schmidt VM, Schorkopf DLP, Hrncir M, Zucchi R, Barth FG (2006) Collective foraging in a stingless bee: dependence on food profitability and sequence of discovery. Anim Behav 72:1309–1317

    Article  Google Scholar 

  • Seeley TD (1995) The wisdom of the hive. Harvard University Press, Cambridge

    Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003) Heat reward for insect pollinators. Nature 426:243–244

    Article  PubMed  CAS  Google Scholar 

  • Stromberg MR, Johnsen PB (1990) Hummingbird sweetness preferences: taste or viscosity. Condor 92:606–612

    Article  Google Scholar 

  • Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025

    Article  PubMed  CAS  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We thank Tom Collett and Simon Laughlin for discussions and Lucy Sandbach and David Prince for help with data collection. The project is funded by NERC grant NE/C000552/1. AGD is supported by ARC DP0878968.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Chittka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitney, H.M., Dyer, A., Chittka, L. et al. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften 95, 845–850 (2008). https://doi.org/10.1007/s00114-008-0393-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0393-9

Keywords

Navigation