Skip to main content

Advertisement

Log in

Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbo S, Saranga Y, Peleg Z, Kerem Z, Lev-Yadun S, Gopher A (2009) Reconsidering domestication of legumes versus cereals in the ancient Near East. Q Rev Biol 84:29–50

    Article  PubMed  Google Scholar 

  • Avivi L (1979) Utilization of Triticum dicoccoides for the improvement of grain protein quantity and quality in cultivated wheats. Monogr Genet Agrar 4:27–38

    Google Scholar 

  • Barneix AJ (2007) Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol 164:581–590

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R (2002) Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol 48:615–623

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nut Soc 62:403–411

    Article  Google Scholar 

  • Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Torun A, Özkan H, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nut 50:1047–1054

    CAS  Google Scholar 

  • Calderini DF, Ortiz-Monasterio I (2003) Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci 43:141–151

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cox M, Qualset C, Rains D (1985) Genetic variation for nitrogen assimilation and translocation in wheat. I. Dry matter and nitrogen accumulation. Crop Sci 25:430–435

    Google Scholar 

  • Dijkshoorn W, van Wijk AL (1967) The sulphur requirements of plants as evidenced by the sulphur–nitrogen ratio in the organic matter a review of published data. Plant Soil 26:129–157

    Article  CAS  Google Scholar 

  • Distelfeld A, Fahima T (2007) Wild emmer wheat as a source for high-grain-protein genes: map-based cloning of Gpc-B1. Isr J Plant Sci 55:297–306

    Article  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Dvořák J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171:323–332

    Article  PubMed  CAS  Google Scholar 

  • FAOstat (2007) Food and Agriculture Organization of the United Nations. http://faostat.fao.org

  • Feil B, Fossati D (1995) Minerals composition of Triticale grains as related to grain yield and grain protein. Crop Sci 35:1426–1431

    Google Scholar 

  • Feldman M (2001) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. Lavoisier Tech & Doc, Paris, pp 3–56

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Garnett R, Graham RD (2005) Distribution and remobilization of iron and copper in wheat. Ann Bot 95:817–826

    Article  PubMed  CAS  Google Scholar 

  • Gauer L, Grant C, Gehl D, Bailey L (1992) Effects of nitrogen fertilization on grain protein content, nitrogen uptake, and nitrogen use efficiency of six spring wheat (Triticum aestivum L.) cultivars, in relation to estimated moisture supply. Can J Plant Sci 72:235–241

    CAS  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2008) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant soil 310:67–75

    Article  CAS  Google Scholar 

  • Gonzalez-Hernandez JL, Elias EM, Kianian SF (2004) Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225

    Article  CAS  Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. J Nutr 132:500S–502S

    PubMed  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  PubMed  CAS  Google Scholar 

  • Grusak MA, Cakmak I (2005) Methods to improve the crop-delivery of minerals to humans and livestock. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell Publishing, Oxford, pp 265–286

    Google Scholar 

  • Guzmán-Maldonado SH, Martinez O, costa-Gallegos JA, Guevara-Lara F, Paredes-Lopez O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  Google Scholar 

  • Harjit S, Prasad M, Varshney RK, Roy JK, Balyan HS, Dhaliwal HS, Gupta PK (2001) STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat. Plant Breed 120:273–278

    Article  Google Scholar 

  • Hotz C, Brown K (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204

    Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbreed chromosome lines. Crop Sci 37:1586–1589

    Article  CAS  Google Scholar 

  • Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524

    Article  CAS  Google Scholar 

  • Ladizinsky G (1998) Plant evolution under domestication. Kluwer, Dordrecht

    Google Scholar 

  • Larsen RJ, Marx ML (1985) An introduction to probability and its applications. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity 36:49–58

    Article  Google Scholar 

  • Löffler C, Bush R, Wiersma J (1983) Recurrent selection for grain protein percentage in hard red spring wheat. Crop Sci 23:1097–1101

    Article  Google Scholar 

  • Lott JNA, West MM (2001) Elements present in mineral nutrient reserves in dry Arabidopsis thaliana seeds of wild type and pho1, pho2, and man1 mutants. Can J Bot 79:1292–1296

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    Article  PubMed  CAS  Google Scholar 

  • McVittie JA, Gale MD, Marshall GA, Westcott B (1978) The intra-chromosomal mapping of the Norin 10 and Tom Thumb dwarfing genes. Heredity 40:67–70

    Article  Google Scholar 

  • Merrill AL, Watt BK (1973) Energy value of food—basis and derivation. US Department of Agriculture Handbook No. 74

  • Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein from Trititcum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci 39:508–513

    Article  CAS  Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheats progenitor, Triticum dicoccoides. Springer, Berlin

    Google Scholar 

  • O’Brien TP, Sammut ME, Lee JW, Smart MG (1985) The vascular system of the wheat spikelet. Aust J Plant Physiol 12:487–512

    Article  Google Scholar 

  • Oury F-X, Leenhardt F, Rémésy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G (2006) Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron 25:177–185

    Article  CAS  Google Scholar 

  • Özkan H, Brandolini A, Torun A, Altintas S, Eker S, Kilian B, Braun H, Salamini F, Cakmak I (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments. Springer, Berlin, pp 455–462

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Rengel Z (1994) Distribution and remobilization of Zn and Mn during grain development in wheat. J Exp Bot 45:1829–1835

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008a) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin YI, Röder MS, Kilian A, Korol AB, Fahima T (2008b) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat RIL population. Plant Cell Environ (in press). doi:10.1111/j.1365-3040.2009.01956.x

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Peterson CV, Johnson VA, Mattern PJ (1986) Influence of cultivar and environment on mineral and protein concentration of wheat flour, bran, and grain. Cereal Chem 63:183–186

    CAS  Google Scholar 

  • Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341–345

    Article  Google Scholar 

  • Raboy V (2000) Low-phytic-acid grains. Food Nutr Bull 21:423–427

    Google Scholar 

  • Raboy V, Noaman MH, Taylor GA, Pickett SG (1991) Grain phytic acid and protein are highly correlated in winter wheat. Crop Sci 31:631–635

    Article  CAS  Google Scholar 

  • Ronin YI, Korol AB, Nevo E (1999) Single- and multiple-trait mapping analysis of linked quantitative trait loci: some asymptotic analytical approximations. Genetics 151:387–396

    PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Sanchez PA, Swaminathan MS (2005) Cutting world hunger in half. Science 307:357–359

    Article  PubMed  CAS  Google Scholar 

  • Scarth R, Law CN (1983) The location of the photoperiod gene, Ppd2 and an additional factor for ear emergence time on chromosome 2B of wheat. Heredity 51:607–619

    Article  Google Scholar 

  • Shi R, Li H, Tong Y, Jing R, Zhang F, Zou C (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    Article  CAS  Google Scholar 

  • Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA, Galiba G, Sutka J (1997) Mapping frost tolerance loci in wheat and comparative mapping with other cereals. Acta Agron Hung 45:265–270

    Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Vreugdenhil D, Aarts MGM, Koornneef M, Nelissen H, Ernst WHO (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ 27:828–839

    Article  CAS  Google Scholar 

  • Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179:1033–1047

    Article  PubMed  CAS  Google Scholar 

  • Welch RM (1999) Importance of seed mineral nutrient reserves in crop growth and development. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Food Products Press, New York, pp 205–226

    Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • WHO (2002) World Health Organization Report 2002: Reducing risks, promoting healthy life. World Health Organization, Geneva

  • Yilmaz A, Ekiz H, Gültekin I, Torun B, Barut H, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    Article  CAS  Google Scholar 

  • Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19

    Article  CAS  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by HarvestPlus Biofortification Challenge Program (http://www.harvestplus.org). The authors are also grateful to The Israel Science Foundation (ISF) grant #1089/04 and State Planning Organization of the Turkish Republic for providing additional support to this study. We greatly acknowledge A. Avneri, M. Chatzav and U. Uner for their excellent assistance in the field experiments. Z. Peleg is indebted to the Israel Council for Higher Education postdoctoral fellowships award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehoshua Saranga.

Additional information

Communicated by D. Hoisington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peleg, Z., Cakmak, I., Ozturk, L. et al. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119, 353–369 (2009). https://doi.org/10.1007/s00122-009-1044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1044-z

Keywords

Navigation