Skip to main content

Advertisement

Log in

TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Inflammation contributes to pancreatic beta cell dysfunction in type 2 diabetes. Toll-like receptor (TLR)-2 and -4 ligands are increased systemically in recently diagnosed type 2 diabetes patients, and TLR2- and TLR4-deficient mice are protected from the metabolic consequences of a high-fat diet. Here we investigated the role of macrophages in TLR2/6- and TLR4-mediated effects on islet inflammation and beta cell function.

Methods

Genetic and pharmacological approaches were used to determine the effects of TLR2/6 and TLR4 ligands on mouse islets, human islets and purified rat beta cells. Islet macrophages were depleted and sorted by flow cytometry and the effects of TLR2/6- and TLR4-activated bone-marrow-derived macrophages (BMDMs) on beta cell function were assessed.

Results

Macrophages contributed to TLR2/6- and TLR4-induced islet Il1a/IL1A and Il1b/IL1B mRNA expression in mouse and human islets and IL-1β secretion from human islets. TLR2/6 and TLR4 ligands also reduced insulin gene expression; however, this occurred in a non-beta cell autonomous manner. TLR2/6- and TLR4-activated BMDMs reduced beta cell insulin secretion partly via reducing Ins1, Ins2, and Pdx1 mRNA expression. Antagonism of the IL-1 receptor and neutralisation of IL-6 completely reversed the effects of activated macrophages on beta cell gene expression.

Conclusions/interpretation

We conclude that islet macrophages are major contributors to islet IL-1β secretion in response to TLR2/6 and TLR4 ligands. BMDMs stimulated with TLR2/6 and TLR4 ligands reduce insulin secretion from pancreatic beta cells, partly via IL-1β- and IL-6-mediated decreased insulin gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMDM:

Bone-marrow-derived macrophage

CCL2:

Chemokine (C-C motif) ligand 2

DAMPs:

Danger-associated molecular patterns

GSIS:

Glucose-stimulated insulin secretion

LPS:

Lipopolysaccharide

PAMPs:

Pathogen-associated molecular patterns

qPCR:

Quantitative PCR

TLR:

Toll-like receptor

WT:

Wild-type

References

  1. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41:1241–1248

    Article  CAS  PubMed  Google Scholar 

  3. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  CAS  PubMed  Google Scholar 

  4. Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

    Article  CAS  PubMed  Google Scholar 

  5. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688

    Article  CAS  PubMed  Google Scholar 

  6. Ehses JA, Lacraz G, Giroix MH et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A 106:13998–14003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jourdan T, Godlewski G, Cinar R et al (2013) Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19:1132–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Eguchi K, Manabe I, Oishi-Tanaka Y et al (2012) Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab 15:518–533

    Article  CAS  PubMed  Google Scholar 

  9. Homo-Delarche F, Calderari S, Irminger JC et al (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633

    Article  CAS  PubMed  Google Scholar 

  10. Ehses JA, Meier DT, Wueest S et al (2010) Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 53:1795–1806

    Article  CAS  PubMed  Google Scholar 

  11. Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33:861–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Westwell-Roper C, Nackiewicz D, Dan M, Ehses JA (2014) Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes. Immunol Cell Biol 92:314–323

  13. Creely SJ, McTernan PG, Kusminski CM et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–E747

    Article  CAS  PubMed  Google Scholar 

  14. Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N (2013) Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One 8:e63983

    Article  PubMed Central  PubMed  Google Scholar 

  15. Brun P, Castagliuolo I, Di Leo V et al (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292:G518–G525

    Article  CAS  PubMed  Google Scholar 

  16. Cucak H, Grunnet LG, Rosendahl A (2014) Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol 95:149–160

    Article  CAS  PubMed  Google Scholar 

  17. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  18. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB et al (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–1998

    Article  CAS  PubMed  Google Scholar 

  20. Kuo LH, Tsai PJ, Jiang MJ et al (2011) Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse. Diabetologia 54:168–179

    Article  CAS  PubMed  Google Scholar 

  21. Himes RW, Smith CW (2010) Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J 24:731–739

  22. Poggi M, Bastelica D, Gual P et al (2007) C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 50:1267–1276

    Article  CAS  PubMed  Google Scholar 

  23. Kim F, Pham M, Luttrell I et al (2007) Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 100:1589–1596

    Article  CAS  PubMed  Google Scholar 

  24. Vives-Pi M, Somoza N, Fernandez-Alvarez J et al (2003) Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol 133:208–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wen L, Peng J, Li Z, Wong FS (2004) The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J Immunol 172:3173–3180

    Article  CAS  PubMed  Google Scholar 

  26. Boni-Schnetzler M, Boller S, Debray S et al (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150:5218–5229

    Article  CAS  PubMed  Google Scholar 

  27. Amyot J, Semache M, Ferdaoussi M, Fontes G, Poitout V (2012) Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-like receptor-4 and NF-kappaB signalling. PLoS One 7:e36200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gibson DL, Montero M, Ropeleski MJ et al (2010) Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling. Gastroenterology 139:1277–1288

    Article  CAS  PubMed  Google Scholar 

  29. Ii M, Matsunaga N, Hazeki K et al (2006) A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol 69:1288–1295

    Article  CAS  PubMed  Google Scholar 

  30. Matsunaga N, Tsuchimori N, Matsumoto T, Ii M (2011) TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 79:34–41

    Article  CAS  PubMed  Google Scholar 

  31. Takashima K, Matsunaga N, Yoshimatsu M et al (2009) Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 157:1250–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Westwell-Roper C, Dai DL, Soukhatcheva G et al (2011) IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol 187:2755–2765

    Article  CAS  PubMed  Google Scholar 

  33. Ribaux P, Ehses JA, Lin-Marq N et al (2007) Induction of CXCL1 by extracellular matrix and autocrine enhancement by IL-1 in rat pancreatic β-cells. Endocrinology 148:5582–5590

    Article  CAS  PubMed  Google Scholar 

  34. Westwell-Roper CY, Ehses JA, Verchere CB (2014) Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1beta production and beta cell dysfunction. Diabetes 63:1698–1711

  35. Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A 105:13163–13168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Calderon B, Suri A, Miller MJ, Unanue ER (2008) Dendritic cells in islets of Langerhans constitutively present beta cell-derived peptides bound to their class II MHC molecules. Proc Natl Acad Sci U S A 105:6121–6126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yin N, Xu J, Ginhoux F et al (2012) Functional specialization of islet dendritic cell subsets. J Immunol 188:4921–4930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  39. Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405

    Article  CAS  PubMed  Google Scholar 

  40. Wadt KA, Larsen CM, Andersen HU, Nielsen K, Karlsen AE, Mandrup-Poulsen T (1998) Ciliary neurotrophic factor potentiates the beta-cell inhibitory effect of IL-1beta in rat pancreatic islets associated with increased nitric oxide synthesis and increased expression of inducible nitric oxide synthase. Diabetes 47:1602–1608

    Article  CAS  PubMed  Google Scholar 

  41. Novotny GW, Lundh M, Backe MB et al (2012) Transcriptional and translational regulation of cytokine signaling in inflammatory beta-cell dysfunction and apoptosis. Arch Biochem Biophys 528:171–184

    Article  CAS  PubMed  Google Scholar 

  42. Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526

    Article  CAS  PubMed  Google Scholar 

  43. Rissanen A, Howard CP, Botha J, Thuren T, for the Global I (2012) Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab 14:1088–1096

    CAS  PubMed  Google Scholar 

  44. Sloan-Lancaster J, Abu-Raddad E, Polzer J et al (2013) Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes. Diabetes Care 36:2239–2246

    Article  CAS  PubMed  Google Scholar 

  45. Cavelti-Weder C, Babians-Brunner A, Keller C et al (2012) Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35:1654–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. van Asseldonk EJ, Stienstra R, Koenen TB et al (2010) The effect of the interleukin-1 cytokine family members IL-1F6 and IL-1F8 on adipocyte differentiation. Obesity 18:2234–2236

    Article  PubMed  Google Scholar 

  47. Xoma Ltd (2011) XOMA 052 Phase 2b top line results: glucose control not demonstrated, positive anti-inflammatory effect, cardiovascular biomarker and lipid improvement and safety confirmed. Available from http://investors.xoma.com/releasedetail.cfm?ReleaseID=559470

  48. Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK (2013) Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62:194–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Xu and M. Komba for technical assistance provided by the CFRI FACS core and islet isolation core facilities, respectively.

Funding

This work was supported by funding from the Child and Family Research Institute (JAE), the University of British Columbia (JAE), the Canadian Institutes of Health Research (PCN-110793 and PNI-120292; JAE), the European Research Council (KM), the Diabetes Competence Network KKNDm supported by the Federal Ministry of Germany (BMBF; KM), and a collaborative research agreement with Servier (JAE, KM). JAE has salary support from a Child and Family Research Institute Investigator Award and a Canadian Diabetes Association scholar award. DN is supported by a UBC Transplantation Training Program and a CIHR-Vanier Canada Graduate Scholarship. CW-R is supported by a CIHR-Vanier Canada Graduate Scholarship.

Duality of interest

CS-K and BG are employees of Servier, France. All other authors declare that there is no duality of interest associated with their contribution to this manuscript.

Contribution statement

DN, MD, WH, RK, AS, SR, CW-R, AC, MS designed and performed experiments, and analysed data. KM designed experiments and CS-K and BG contributed to the conception and design of the study. All authors edited the manuscript and approved the final version. JAE supervised the study, designed and performed experiments, analysed data and wrote the manuscript. JAE is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Ehses.

Additional information

Dominika Nackiewicz and Meixia Dan contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

(PDF 921 kb)

ESM Fig. 2

(PDF 2,936 kb)

ESM Fig. 3

(PDF 1,156 kb)

ESM Fig. 4

(PDF 1,003 kb)

ESM Fig. 5

(PDF 3,425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nackiewicz, D., Dan, M., He, W. et al. TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia 57, 1645–1654 (2014). https://doi.org/10.1007/s00125-014-3249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3249-1

Keywords

Navigation