Skip to main content

Advertisement

Log in

Two-stage gold mineralization of the Axi epithermal Au deposit, Western Tianshan, NW China: Evidence from Re–Os dating, S isotope, and trace elements of pyrite

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Axi gold deposit is one of the largest epithermal deposits in northwestern China and is characterized by multistage generations of pyrite associated with gold mineralization. Genetic models for superjacent epithermal Au and porphyry Cu systems involve either contemporaneous or episodic mineralization, implying different metal sources and ore-forming events. Nine pyrite separates from disseminated ores associated with pyrite-sericite-quartz alteration in the Axi deposit yield a Re–Os isochron age of 350 ± 10 Ma (MSWD = 5.1, initial 187Os/188Os (IOs) = 0.20 ± 0.11). This age likely reflects a mixed contribution of two subtypes of disseminated pyrite (Py1) based on zoned pyrite crystals. The isochron age of 353 ± 6 Ma (MSWD = 1.6, IOs = 0.107 ± 0.021, n = 6), excluding samples with pyrite cores, overlaps previous ages for andesite from the Dahalajunshan Formation (ca. 356 Ma), indicating that the early mineralization event occurred shortly after the formation of host rocks (ca. 353 Ma). Pyrite from disseminated ores shows little variation of sulfur isotopic compositions (+ 2.9 to + 4.0‰) and has high Cu, Co, Ni, and V contents, which favors a magmatic-hydrothermal origin. Pyrite grains from gray quartz veins yield a younger Re–Os isochron age of 332 ± 8 Ma (MSWD = 0.22, n = 4). Vein-hosted pyrite shows characteristics of a mantle-derived magma source (IOs: 0.171 ± 0.024; δ34S: − 0.10~+ 3.10‰), which result from the intrusion-driven convective hydrothermal circulation accompanying fluid exsolution and metal remobilization from basement and wallrocks. Our data demonstrate that the Axi gold deposit was formed during two temporally separated hydrothermal events. This model of ore formation may apply to other epithermal-porphyry deposits within the Axi–Tawuerbieke district: disseminated Au and porphyry-style Au ± Cu mineralization occurred shortly after magmatic activity (356–353 Ma) whereas epithermal-style Au mineralization occurred at ca. 332 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alard O, Griffin WL, Pearson NJ, Lorand JP, O’Reilly SY (2002) New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth Planet Sci Lett 203:651–663

    Google Scholar 

  • An F, Zhu YF (2018) Geology and geochemistry of the Early Permian Axi low-sulfidation epithermal gold deposit in North Tianshan (NW China). Ore Geol Rev 100:12–30

    Google Scholar 

  • An F, Zhu YF, Wei SN, Lai SC (2013) An Early Devonian to Early Carboniferous volcanic arc in North Tianshan, NW China: geochronological and geochemical evidence from volcanic rocks. J Asian Earth Sci 78:100–113

    Google Scholar 

  • An F, Zhu YF, Wei SN, Lai SC (2017) The zircon U–Pb and Hf isotope constraints on the basement nature and Paleozoic evolution in northern margin of Yili Block, NW China. Gondwana Res 43:41–54

    Google Scholar 

  • Bissig T, Clark A, Lee J, Hodgson C (2002) Miocene landscape evolution and geomorphologic controls on epithermal processes in the El Indio-Pascua Au-Ag-Cu belt, Chile and Argentina. Econ Geol 97:971–996

    Google Scholar 

  • Brenan JM, Cherniak DJ, Rose LA (2000) Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system. Earth Planet Sci Lett 180:399–413

    Google Scholar 

  • Chaussidon M, Lorand PJ (1990) Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): an ion microprobe study. Geochim Cosmochim Acta 54:2835–2846

    Google Scholar 

  • Chen YJ, Pirajno F, Wu G, Qi JP, Xiong XL (2012a) Epithermal deposits in North Xinjiang, NW China. Int J Earth Sci 101:889–917

    Google Scholar 

  • Chen HY, Chen YJ, Baker M (2012b) Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, Northwest China: implications for ore genesis and mineral exploration. Chem Geol 310-311:1–11

    Google Scholar 

  • Chen HY, Wan B, Pirajno F, Chen YJ, Xiao B (2018) Metallogenesis of the Xinjiang Orogens, NW China – new discoveries and ore genesis. Ore Geol Rev 100:1–11

    Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution and tectonic controls. Econ Geol 100:801–818

    Google Scholar 

  • Cooke DR, Deyell CL, Waters PJ, Gonzales RI, Zaw K (2011) Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district, Philippines. Econ Geol 106:1399–1424

    Google Scholar 

  • Corbett GJ (2013) Pacific rim epithermal Au-Ag: World Gold Conference Brisbane. Proc Aust Inst Min Metall Publ Ser 9:5–13

    Google Scholar 

  • Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochim Cosmochim Acta 55:397–401

    Google Scholar 

  • Dong LL, Wan B, Deng C, Cai KD, Xiao WJ (2018) An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: constraints from in situ oxygen-sulfur isotopes and geochronology. J Asian Earth Sci 153:412–424

    Google Scholar 

  • Esser BK, Turekian KK (1993) The osmium isotopic composition of the continental crust. Geochim Cosmochim Acta 57:3093–3104

    Google Scholar 

  • Feng JP (2005) Geology, geochemistry and genesis of main gold deposits in Tulasu area, Western Tianshan, Xinjiang, China. (Master thesis) Northwest University, Xi’an:1–73 (in Chinese with English abstract)

  • Finlay AJ, Selby D, Osborne MJ, Finucane D (2010) Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: insights from Re-Os isotopes. Geology 38:979–982

    Google Scholar 

  • Gao J, Long LL, Klemd R, Qian Q, Liu D, Xiong X, Su W, Liu W, Wang Y, Yang F (2009) Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. Int J Earth Sci 98:1221–1236

    Google Scholar 

  • Gregory MJ, Lang JR, Gilbert S, Hoal KO (2013) Geometallurgy of the pebble porphyry copper–gold–molybdenum deposit, Alaska: implications for gold distribution and paragenesis. Econ Geol 108:463–482

    Google Scholar 

  • Gu XX, Zhang YM, Peng YW, Zhang LQ, Wang XL, Gao H, Dong LH, Tu QJ (2014) The Fe-Cu-Mo polymetallic mineralization system related to intermediateacid intrusions in the boluokenu metallogenic belt of the West Tianshan, Xinjiang: rock-and ore-forming geochemistry and tectonomagmatic evolution. Earth Sci Front 21:156–175 (in Chinese with English abstract)

    Google Scholar 

  • Gu XX, Dong LH, Peng YW, Wang XL, Yuan P, Zhu BY (2016) Formation and evolution of the epithermal-porphyry Au polymetallic mineralization system in the Tulasu volcanic basin of the West Tianshan, Xinjiang. Acta Petrol Sin 32:1283–1300 (in Chinese with English abstract)

    Google Scholar 

  • Huang XW, Zhao XF, Qi L, Zhou MF (2013) Re–Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China. Chem Geol 347:9–19

    Google Scholar 

  • Huang XW, Zhou MF, Beaudoin G, Gao JF, Qi L, Lyu C (2018) Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements. Mineral Deposita 53:1039–1060

    Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: part I. Protonmicroprobe analyses of pyrite, chalcopyrite, and sphalerite, and part II. Selenium levels in pyrite: comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Google Scholar 

  • İmer A, Richards JP, Muehlenbachs K (2016) Hydrothermal evolution of the Çöpler porphyry-epithermal Au deposit, Erzincan Province, Central Eastern Turkey. Econ Geol 111:1619–1658

    Google Scholar 

  • Jia B, Wu RS, Tian CL, Sha DM, Liu HS (1999) The characteristics of upper Paleozoic adularia-sericite type of Axi gold deposit, Xinjiang. J Precious Metal Geol 8:199–208 (in Chinese with English abstract)

    Google Scholar 

  • Jiang ZS, Zhang ZH, Wang ZH, Duan SG, Li FM, Tian JQ (2014) Geology, geochemistry, and geochronology of the Zhibo iron deposit in the Western Tianshan, NW China: constraints on metallogenesis and tectonic setting. Ore Geol Rev 57:406–424

    Google Scholar 

  • Jiang SH, Bagas L, Liang QL (2017) Pyrite Re-Os isotope systematics at the Zijinshan deposit of SW Fujian, China: constraints on the timing and source of Cu-Au mineralization. Ore Geol Rev 80:612–622

    Google Scholar 

  • Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72:728–745

    Google Scholar 

  • Kerr A, Selby D (2012) The timing of epigenetic gold mineralization on the Baie Verte Peninsula, Newfoundland, Canada: new evidence from Re–Os pyrite geochronology. Mineral Deposita 47:325–337

    Google Scholar 

  • Kirk JD, Ruiz J, Kesler SE, Simon A, Muntean JL (2014) Re-Os age of the Pueblo Viejo epithermal deposit, Dominican Republic. Econ Geol 109:503–512

    Google Scholar 

  • Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331–358

    Google Scholar 

  • Lawley C, Selby D, Imber J (2013) Re-Os molybdenite, pyrite, and chalcopyrite geochronology, lupa goldfield, southwestern Tanzania: tracing metallogenic time scales at midcrustal shear zones hosting orogenic Au deposits. Econ Geol 108:1591–1613

    Google Scholar 

  • Lawley CJM, Creaser RA, Jackson S, Yang Z, Davis B, Pehrsson S, Dubé B, Vaillancourt D (2015) Unravelling the western Churchill Province Paleoproterozoic gold metallotect: constraints from Re–Os arsenopyrite and U–Pb xenotime geochronology and LA-ICP-MS arsenopyrite trace element chemistry at the BIF-hosted Meliadine gold district, Nunavut, Canada. Econ Geol 110:1425–1454

    Google Scholar 

  • Li B, Jiang SY (2017) Genesis of the giant Zijinshan epithermal Cu-Au and Luoboling porphyry Cu-Mo deposits in the Zijinshan ore district, Fujian Province, SE China: a multi-isotope and trace element investigation. Ore Geol Rev 88:753–767

    Google Scholar 

  • Li BH, Xue XD (1994) Ore characters of Axi no 1 gold deposit and its genetic significance. Xinjiang Geol 12:146–156 (in Chinese with English abstract)

    Google Scholar 

  • Li HQ, Xie CF, Chang HL (1998) Study on meallogenetic chronology of nonferrous and precious metallic ore deposit in North Xinjiang, China. Geological Publishing House, Beijing (in Chinese), pp 107–264

    Google Scholar 

  • Li J, Liang XR, Xu JF, Suzuki K, Dong YH (2010) Simplified technique for the measurements of Re-Os isotope by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem J 44:73–80

    Google Scholar 

  • Li GM, Dong SL, Shi HZ, Liu B, Zhang ZL (2012) 40Ar-39Ar dating of sericite in the Nongruri gold deposit of Tibet and its geological significance. Geotecton Metallog 4:607–612 (in Chinese with English abstract)

    Google Scholar 

  • Li J, Jiang XY, Xu JF, Zhong LF, Wang XC, Wang GQ, Zhao PP (2014) Determination of platinum-group elements and re-Os isotopes using ID-ICP-MS and N-TIMS from a single digestion after two-stage column separation. Geostand Geoanal Res 38:37–50

    Google Scholar 

  • Li J, Zhao PP, Liu JG, Wang XC, Yang Y, Wang GQ, Xu JF (2015) Reassessment of hydrofluoric acid desilicification in the Carius tube digestion technique for Re-Os isotopic determination in geological samples. Geostand Geoanal Res 39:17–30

    Google Scholar 

  • Liu ZK, Mao XC, Pan M, He PX (2017) Hydrothermal alteration in the Axi gold deposit, western Tianshan. Geol Sci Technol Inf 36:194–202 (in Chinese with English abstract)

    Google Scholar 

  • Liu ZK, Mao XC, Deng H, Li B, Zhang SG, Lai JQ, Bayless RC, Pan M, Li LJ, Shang QH (2018) Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan: insights from geochemical effects of alteration, mineralization and trace elements in pyrite. Ore Geol Rev 102:368–385

    Google Scholar 

  • Long LL, Gao J, Klemd R, Beier C, Qian Q, Zhang X, Wang JB, Jiang T (2011) Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: implications for continental growth in the southwestern central Asian Orogenic Belt. Lithos 126:321–340

    Google Scholar 

  • Ludwig K (2008) User's manual for Isoplot 3.70: a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center Special, Publication No. 4 pp 1–71

  • Marinova I, Ganev V, Titorenkova R (2014) Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria. Mineral Deposita 49:49–74

    Google Scholar 

  • Meisel T, Walker RJ, Irving AJ, Lorand J-P (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65:1311–1323

    Google Scholar 

  • Morelli RM, Creaser RA, Selby D, Kelley KD, Leach DL, King AR (2004) Re–Os sulfide geochronology of the Red Dog sediment-hosted Zn–Pb–Ag deposit, Brooks Range, Alaska. Econ Geol 99:1569–1576

    Google Scholar 

  • Morishita Y, Nakano T (2008) Role of basement in epithermal deposits: the Kushikino and Hishikari gold deposits, southwestern Japan. Ore Geol Rev 34:597–609

    Google Scholar 

  • Nozaki T, Kato Y, Suzuki K (2010) Re–Os geochronology of the Iimori Besshi-type massive sulfide deposit in the Sanbagawa metamorphic belt, Japan. Geochim Cosmochim Acta 74:4322–4331

    Google Scholar 

  • Nozaki T, Kato Y, Suzuki K (2014) Re–Os geochronology of the Hitachi volcanogenic massive sulfide deposit: the oldest ore deposit in Japan. Econ Geol 109:2023–2034

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567

    Google Scholar 

  • Peng YW, Gu XX, Lv PR, Zhang YM, Cheng WB, Wang XL (2017) Genesis and tectonic setting of the late Devonian Tawuerbieke gold deposit in the Tulasu ore cluster, western Tianshan, Xinjiang, China. Int Geol Rev 59:1344–1368

    Google Scholar 

  • Peng YW, Gu XX, Cheng WB, Zhao XB, Wang GN, Lu LT, Han JM (2018) Metallogenesis of the Late Palaeozoic Axi–Tawuerbieke Au–Pb–Zn district in the Tulasu Basin, Western Tianshan, China: constraints from geological characteristics and isotope geochemistry. Geol J 53:3030–3050

    Google Scholar 

  • Pokrovski GS, Borisova AY, Bychkov AY (2013) Speciation and transport of metals and metalloids in geological vapors. Rev Mineral Geochem 76:165–218

    Google Scholar 

  • Pope EC, Bird DK, Arnórsson S, Fridriksson T, Elders WA, Fridleifsson GÓ (2009) Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland. Geochim Cosmochim Acta 73:4468–4488

    Google Scholar 

  • Qi L, Hu J, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507–513

    Google Scholar 

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796

    Google Scholar 

  • Reich M, Deditius A, Chryssoulis S, Li JW, Ma CQ, Parada MA, Barra F, Mittermayr F (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochim Cosmochim Acta 104:42–62

    Google Scholar 

  • Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts MP, Munizaga R (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems? Econ Geol 111:743–761

    Google Scholar 

  • Reyes AG, Christenson BW, Faure K (2010) Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand. J Volcanol Geotherm Res 192:117–141

    Google Scholar 

  • Saal AE, Rudnick RL, Ravizza GE, Hart SR (1998) Re-Os isotope evidence for the composition, formation and age of the lower continental crust. Nature 393:58–61

    Google Scholar 

  • Saunders JA, Unger DL, Kamenov GD, Fayek M, Hames WE, Utterback WC (2008) Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au–Ag deposits, Northern Great Basin, USA. Mineral Deposita 43:715–734

    Google Scholar 

  • Schütte P, Chiaradia M, Barra F, Villagómez D, Beate B (2012) Metallogenic features of Miocene porphyry Cu and porphyry-related mineral deposits in Ecuador revealed by Re-Os, 40Ar/39Ar, and U-Pb geochronology. Mineral Deposita 47:383–410

    Google Scholar 

  • Selby D, Kelley KD, Hitzman MW, Zieg J (2009) Re–Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonatehosted copper deposits at Ruby Creek, southern Brooks range, Alaska. Econ Geol 104:437–444

    Google Scholar 

  • Seo JH, Guillong M, Heinrich CA (2009) The role of sulfur in the formation of magmatic–hydrothermal copper–gold deposits. Earth Planet Sci Lett 282:323–328

    Google Scholar 

  • Sha DM, Jin CZ, Dong LH, Wu RS, Tian CL, Jia B (2005) Study on the metallogenic geochenmistry of Axi gold deposit in Weatern Tianshan Mountains. Geol Resour 14:118–125 (in Chinese with English abstract)

    Google Scholar 

  • Sharma M, Wasserburg GJ, Hofmann AW, Butterfield DA (2000) Osmium isotopes in hydrothermal fluids from the Juan de Fuca Ridge. Earth Planet Sci Lett 179:139–152

    Google Scholar 

  • Sillitoe RH (1998) Major regional factors favoring large size, high hypogene grade, elevated gold content and supergene oxidation and enrichment of porphyry copper deposits: In: Porter TM (Ed.), Porphyry and hydrothermal copper and gold deposits–a global perspective. Australian Mineral Foundation, Perth, pp 21–−34

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Google Scholar 

  • Sillitoe RH (2015) Epithermal paleosurfaces. Mineral Deposita 50:767–793

    Google Scholar 

  • Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In: Simmons SF, Graham IJ (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth. Soc Econ Geol Spec Pub 10:315–343

  • Simmons SF, White NC, John DA (2005) Geological characteristics of epithermal precious and base metal deposits In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology One Hundredth Anniversary Volume 1905–2005 Society of Economic Geologists, Littleton, pp 485–522

  • Simmons SF, Brown KL, Tutolo BM (2016) Hydrothermal transport of Ag, Au, Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems spatial patterns, fluid-mineral equilibria, and implications for epithermal mineralization. Econ Geol 111:589–618

    Google Scholar 

  • Slack JF, Selby D, Dumoulin JA (2015) Hydrothermal, biogenic, and seawater components in metalliferous black shales of the brooks range, Alaska: Synsedimentary metal enrichment in a carbonate ramp setting. Econ Geol 110:653–675

    Google Scholar 

  • Stein HJ, Morgan JW, Scherstén A (2000) Re–Os dating of low-level highly radiogenic (LLHR) sulfides: the Harnäs gold deposit, Southwest Sweden, records continental scale tectonic events. Econ Geol 95:1657–1671

    Google Scholar 

  • Sun X, Zheng YY, Pirajno F, McCuaig TC, Yu M, Xia SL, Song QJ, Chang HF (2018) Geology, S–Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb–Pb–Zn–Ag deposit in southern Tibet: implications for multiple mineralization events at Zhaxikang. Mineral Deposita 53:435–458

    Google Scholar 

  • Tang GJ, Wang Q, Zhao ZH, Wyman DA, Chen HH, Jia XH, Jiang ZQ (2009) LA-ICP-MS zircon U-Pb geochronology, element geochemistry and petrogenesis of the andesites in the eastern Taerbieke gold deposit of the western Tianshan region. Acta Petrol Sin 25:1341–1352 (in Chinese with English abstract)

    Google Scholar 

  • Tang GJ, Wang Q, Wyman DA, Sun M, Zhao ZH, Jiang ZQ (2013) Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China), constraints from geochronology, geochemistry and Sr–Nd–Pb–Hf isotopic compositions. J Asian Earth Sci 74:113–128

    Google Scholar 

  • Tardani D, Reich M, Deditius AP, Chryssoulis S, Sánchez-Alfaro P, Wrage J, Roberts MP (2017) Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochim Cosmochim Acta 204:179–204

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Google Scholar 

  • Völkening J, Walczyk T, Heumann KG (1991) Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 105:147–159

    Google Scholar 

  • Wang ZL, Xu DR, Chi GX, Shao YJ, Lai JQ, Deng T, Guo F, Wang Z, Dong GJ, Ning JT, Zou SH (2017) Mineralogical and isotopic constraints on the genesis of the Jingchong Co–Cu polymetallic ore deposit in northeastern Hunan Province, South China. Ore Geol Rev 88:638–654

    Google Scholar 

  • Wei JL, Cao XZ, Xu BJ, Zhang WS, Rao DP, Huang LW (2014) Erosion and post-mineralization change of Axi epithermal gold deposit in Western Tianshan Mountains. Mineral Deposita 33:241–254 (in Chinese with English abstract)

    Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) 100th anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Google Scholar 

  • Wilson AJ, Cooke DR, Harper BJ, Deyell CL (2007) Sulfur isotopic zonation in the Cadia district, southeastern Australia: exploration significance and implications for the genesis of alkalic porphyry gold–copper deposits. Mineral Deposita 42:465–487

    Google Scholar 

  • Xu BJ, Cao XZ, Wei JL, Zhang WS, Huang LW (2014) Study on metallogenic series and metallogenic model in Axi-Tawuerbieke-Abiyindi area in Yili prefecture, Xinjiang. Contr Geol Miner Resour Res 29:195–505 (in Chinese with English abstract)

    Google Scholar 

  • Xue CJ, Wang HG, Zhao XB, Chen LY (2013) Kexiaxi cluster of small intrusions in the Tulasu gold mineralization district, Western Tianshan, Xinjiang, and its copper exploration prospect. Earth Sci Front 20:180–194 (in Chinese with English abstract)

    Google Scholar 

  • Yang L, Zhao R, Wang QF, Liu XF, Carranza EJM (2018) Fault geometry and fluid-rock reaction: combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China. J Struct Geol 111:14–26

    Google Scholar 

  • Zhai W, Sun XM, Gao J, He XP, Liang JL, Miao LC, Wu YL (2006) SHRIMP dating of zircons from volcanic host rocks of Dahalajunshan formation in Axi gold deposit, Xinjiang, China, and its geological implications. Acta Petrol Sin 17:1399–1404 (in Chinese with English abstract)

    Google Scholar 

  • Zhai W, Sun XM, Sun WD, Su LW, He XP, Wu YL (2009) Geology, geochemistry, and genesis of Axi: a Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China. Ore Geol Rev 36:265–281

    Google Scholar 

  • Zhang GL, Liang JC, Hayward N, Qi SJ (2002) Patterns of structural controls on gold deposits in Tulasu volcanic basin, west Tianshan, Xinjiang. Geol Prospect 38:24–29 (in Chinese with English abstract)

    Google Scholar 

  • Zhang ZH, Mao JW, Wang ZL, Zuo GC, Chen WS, Zhu HP, Wang LS, Lv LS (2007) Geochemistry of fluid inclusions in the Axi gold deposit, West Tianshan, Xinjiang. Acta Petrol Sin 23:2403–2414 (in Chinese with English abstract)

    Google Scholar 

  • Zhang DY, Zhang ZC, Encarnación J, Xue CJ, Duan SG, Zhao ZD, Liu JL (2012) Petrogensis of the Kekesai composite intrusion, weatern Tianshan, NW China: implications for tectonic evolution during Palezoic time. Lithos 146-147:65–79

    Google Scholar 

  • Zhang B, Li N, Shu SP, Wang W, Yu J, Chen X, Ye T, Chen YJ (2018) Textural and compositional evolution of Au-hosting Fe-S-As minerals at the Axi epithermal gold deposit, Western Tianshan, NW China. Ore Geol Rev 100:31–50

    Google Scholar 

  • Zhao XB, Xue CJ, Chi GX, Wang HG, Qi TJ (2014a) Epithermal Au and polymetallic mineralization in the Tulasu Basin, western Tianshan, NW China, potential for the discovery of porphyry Cu-Au deposits. Ore Geol Rev 60:76–96

    Google Scholar 

  • Zhao XB, Xue CJ, Symons DT, Zhang ZC, Wang HG (2014b) Microgranular enclaves in island-arc andesites: a possible link between known epithermal Au and potential porphyry Cu–Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China. J Asian Earth Sci 85:210–223

    Google Scholar 

  • Zhao XB, Xue CJ, Men QH, Yan YH, Wang HG, Zu B, Mi DJ, Li XZ (2014c) Origin and metallogenesis of the Tawuerbieke gold deposit, western Tianshan: insight from Re-Os geochronology and S-Pb isotopic compositions. Earth Sci Front 21:176–186 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Georges Beaudoin and Prof. Pete Hollings for their editorial assistance and constructive comments. This paper greatly benefitted from critical reviews by Dr. Christopher Lawley and an anonymous reviewer. ZL is grateful to Prof. Harald G. Dill, Prof. Guoxiang Chi, Dr. Xiaowen Huang, and Dr. Fang An for their insightful suggestions in this study. Thanks are given to Jianmin Han, Hongxi Fan, and Xudong Han for their help during fieldwork. LA acknowledges the Scientific Program RVO67985831 of the Institute of Geology of the CAS.

Funding

This study is supported by projects from National Key R&D Program of China (No. 2017YFC0601503 and No. 2017YFC0602402), National Natural Science Foundation of China (No. 41472301, No. 41772349, No. 41702073, and No. 41873043), Fundamental Research Funds for the Central Universities of Central South University (No. 2018zzts201), and the Project of Innovation-driven Plan of Central South University (No. 2019CX035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiancheng Mao or Bin Li.

Additional information

Editorial handling: P. Hollings

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Mao, X., Ackerman, L. et al. Two-stage gold mineralization of the Axi epithermal Au deposit, Western Tianshan, NW China: Evidence from Re–Os dating, S isotope, and trace elements of pyrite. Miner Deposita 55, 863–880 (2020). https://doi.org/10.1007/s00126-019-00903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-019-00903-6

Keywords

Navigation