Skip to main content
Log in

Lead Induced Responses of Pfaffia glomerata, an Economically Important Brazilian Medicinal Plant, Under In Vitro Culture Conditions

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Plantlets of Pfaffia glomerata (Spreng.) were exposed in vitro for 30 days to five lead levels (0–400 μM) to analyze the effects on growth and oxidative stress and responses of various antioxidants vis-à-vis lead accumulation. The plantlets showed significant lead accumulation in roots (1,532 μg g−1 DW) with a low root to shoot lead translocation (ca. 3.6%). The growth of plantlets was negatively affected by various lead treatments, although the level of photosynthetic pigments did not alter significantly in response to any lead treatment. However, plantlets suffered from oxidative stress as suggested by the significant increase in malondialdehyde levels in root (8.48 μmol g−1 FW) and shoot (3.20 μmol g−1 FW) tissues with increasing lead treatments. In response to the imposed toxicity, increases in the activities of catalase in root (4.14 ∆E min−1 mg−1 protein) and shoot (3.46 ∆E min−1 mg−1 protein) and superoxide dismutase in root (345.32 units mg−1 protein) and shoot (75.26 units mg−1 protein), respectively, were observed, while the levels of non-protein thiols and ascorbic acid were not affected significantly in either roots or shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Met Enzy 105:121–126

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidases in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: Evolutionary aspects. CRC Press, Boca Raton, FL, pp 155–177

    Google Scholar 

  • Broyer TC, Johnson CM, Paul RE (1972) Some aspects of lead in plant nutrition. Plant Soil 36:301–313

    Article  CAS  Google Scholar 

  • Buckner B, Johal GS, Janick-Buckner D (2000) Cell death in maize. Physiol Plant 108:231–239

    Article  CAS  Google Scholar 

  • Carneiro MAC, Siqueira JO, Moreira FM (2002) Comportamento de espécies herbáceas em misturas de solo com diferentes graus de contaminação com metais pesados. Pesq Agrop Brazil 37:1629–1638

    Google Scholar 

  • Chaney RL, Ryan JA (1994) Risk based standards for arsenic, lead and cadmium in urban soils. DECHEMA, Frankfurt, pp 1–130

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  Google Scholar 

  • Chongpraditnum P, Mori S, Chino M (1992) Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol 33:239–244

    Google Scholar 

  • Clijsters A, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in higher plants: defence against oxidative stress. Z Naturforsch 54:730–734

    CAS  Google Scholar 

  • De Paris F, Neves G, Salgueiro JB, Quevedo J, Izquierdo I, Rates SM (2000) Psycopharmacological screening of Pfaffia glomerata Spreng (Amaranthaceae) in rodents. J Ethnopharmaco 73:261–269

    Article  Google Scholar 

  • Duxbury AC, Yentsch CS (1956) Plankton pigment monograph. J Mar Res 15:93–101

    Google Scholar 

  • Ellman GG (1959) Tissue sulphydryl and groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • El-Moshaty FIB, Pike SM, Novacky AJ, Sehgal OP (1993) Lipid peroxidation and superoxide productions in cowpea (Vigna unguicultata) leaves infected with tobacco rings virus or southern bean mosaic virus. J Physiol Mol Plant Patho 43:109–119

    Article  CAS  Google Scholar 

  • Fátima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Article  Google Scholar 

  • Foder F, Cseh E, Varga A, Zaray G (1998) Lead uptake, distribution, remobilization in cucumber. J Plant Nutr 21:1363–1373

    Article  Google Scholar 

  • Foder F, Sarvari E, Lang F, Szigeti Z, Cseh E (1996) Effect of Pb and Cd on cucumber depending on the Fe complex in the culture solution. J Plant Physio 148:434–439

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle. Chemosphere 30:2011–2020

    Article  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LV, Castro GY, Srivastava S, Triapthi RD (2009) Antioxidant defence mechanism in hydroponically grown Zea maize seedlings under moderate lead stress. J Hazard Mat 172:479–484

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Cunningham SD (1997) Phytoextraction of lead from contaminated soils. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS symposium series, pp 283–298

  • IARC (International Agency for Research on Cancer) (2006) Inorganic and organic lead compounds. IARC Monograph (23) sup 7, vol 87

  • Jacques-Silva MC, Nogueira CW, Broch LC, Flores EMM, Rocha JBT (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88:119–125

    Article  CAS  Google Scholar 

  • Lim JM, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9

    Article  CAS  Google Scholar 

  • Liu DH, Jiang WS, Wang W, Zhao FM, Lu C (1994) Effect of lead on root growth, cell division, and nucleolus of Allium cepa. Environ Poll 86:1–4

    Article  CAS  Google Scholar 

  • Liu J, Xiong Z, Li T, Huang H (2004a) Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non contaminated sites. Environ Exp Bot 52:43–51

    Article  CAS  Google Scholar 

  • Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2004b) Lead toxicity, uptake and translocation in different rice cultivars. Plant Sci 165:793–802

    Article  Google Scholar 

  • Lowry OH, Rosenberg NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Bio Chem 193:265–275

    CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani E (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopercicon esculentum, Mill). Plant Sci 127:129–137

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Bio Chem 244:6049–6055

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Oliveira F, Akisue G, Akisue M (1980) Contribuição para o estudo para o estudo farmacognóstico do Ginseng brasileiro, Pfaffia paniculata (Martius) Kuntze, An. Farm, Quimica, 20, p 261

  • Pendias AK, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton, p 365

    Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  CAS  Google Scholar 

  • Prassad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026

    Article  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of Horse gram (Macrotyloma uniflorum (Lam.) Verdc.) and Bengal gram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Shiobara Y, Inoue SS, Kato K, Nishiguchi Y, Oishi Y, Nishimoto N, de Oliveira F, Akisue G, Akisue MK, Hashimoto G (1993) A nortriterpenoid, triterpenoids and ecdysteroids from Pfaffia glomerata. Photochemistry 32:1527–1530

    Article  CAS  Google Scholar 

  • Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997) Response of higher plants to lead contaminated environment. Chemosphere 34:2467–2493

    Article  CAS  Google Scholar 

  • Sudhakar C, Syamalabai L, Veeranjaneyulu K (1992) Lead tolerance of certain legume species grown on lead ore tailings. Agri Ecosys Environ 41:253–261

    Article  CAS  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2005) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–1463

    Article  Google Scholar 

  • Tennant D (1975) A test of a modified line intersects method of estimating root length. J Ecol 63:995–1001

    Article  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S (2006) Bioremediation of hazardous lead from the environment. In: Davis EB (ed) Focus on environmental research. Nova Science Publishers Inc, New York, pp 1–26

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Watanabe MA (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) Effect of lead on seed inhibition and germination in different plant species. Plant Sci 137:155–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D. K. Gupta is thankful to Third World Academy of Science (TWAS), Italy and CNPq, Brazil for providing travel and research grant respectively at University Federal de Santa Maria, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, D.K., Nicoloso, F.T., Schetinger, M.R. et al. Lead Induced Responses of Pfaffia glomerata, an Economically Important Brazilian Medicinal Plant, Under In Vitro Culture Conditions. Bull Environ Contam Toxicol 86, 272–277 (2011). https://doi.org/10.1007/s00128-011-0226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-011-0226-y

Keywords

Navigation