Skip to main content
Log in

Effect of Pesticides and Chemical Fertilizers on the Nitrogen Cycle and Functional Microbial Communities in Paddy Soils: Bangladesh Perspective

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The concept of the Nitrogen (N) cycle has been modified over the years based on certain new pathways, including comammox, anammox, and DNRA (dissimilatory nitrate reduction to ammonium). Comammox, nitrification, anammox, denitrification, DNRA, and nitrogen fixation pathways play key roles in the N cycle in paddy soils. Pesticides and chemical fertilizers’ effects on the N cycle in paddy soils together with the possible manifestation of these newly discovery pathways are the focus of this review. Both chemical fertilizers and pesticides’ overuse affect nitrifying archaea/bacteria and denitrifying and anammox bacteria, while heavy metals affect the nitrification rates in paddy soils. To add extra value to this study, we quantified the comammox amoA single copy gene from the Nitrospira strain ‘Nitrospira inopinata. This review will help researchers access the latest information on the N cycle, particularly in the light of the most recent discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from our previous work (Nahar et al. 2020). A- Abundance of comammox N. inopinata, AOA, AOB, and NOB, B- Relative abundance of N. inopinata/ amoA gene copies per g dry soil in paddy soils

Fig. 3

Similar content being viewed by others

References

  • Alam MA, Rahman MM, Biswas JC, Akhter S, Maniruzzaman M et al (2019) Nitrogen transformation and carbon sequestration in wetland paddy field of Bangladesh. Paddy Water Environ 17:677–688

    Article  Google Scholar 

  • Ara L, Lewis M, Ostendorf B (2016) Spatio-temporal analysis of the impact of climate, cropping intensity and means of irrigation: an assessment on rice yield determinants in Bangladesh. Agric Food Secur 5:12. https://doi.org/10.1186/s40066-016-0061-9

    Article  Google Scholar 

  • Bai R, Xi D, He JZ, Hu HW, Fang YT, Zhang LM (2015) Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biol Biochem 91:212–221. https://doi.org/10.1016/j.soilbio.2015.08.040

    Article  CAS  Google Scholar 

  • Chao Y, Mao Y, Yu K, Zhang T (2016) Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomics approach. Appl Microbiol Biotechnol 100:8225–8237. https://doi.org/10.1007/s00253-016-7655-9

    Article  CAS  Google Scholar 

  • Cheng L, Li X, Lin X, Hou L, Liu M, Li Y, Liu S, Hu X (2016) Dissimilatory nitrate reduction processes in sediments of urban river networks: spatiotemporal variations and environmental implications. Environ Pollut 219:545–554

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P et al (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

    Article  CAS  Google Scholar 

  • Hu H, He J (2017) Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments 17:2709–2717

    Article  CAS  Google Scholar 

  • Islam MZ, Khalequzzaman M, Bashar MK, Ivy NA, Haque MM, Mian MAK (2016) Variability assessment of aromatic and fine rice germplasm in Bangladesh based on quantitative traits. Sci World J 14(2796720):20

    Google Scholar 

  • Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57(6):569–596. https://doi.org/10.1080/03650341003787582

    Article  CAS  Google Scholar 

  • Khan MI, Gwon HS, Alam MA, Song HJ, Das S, Kim J (2020) Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Appl Soil Ecol 147:103400

    Article  Google Scholar 

  • Khanom A, Azad MAK, Ali MM, Ali MY, Biswas SK, Rahman MM (2021) Plants and microbes’ responses to the net nitrification rates of chemical fertilizers in vegetable soils. Appl Soil Ecol 158:103783. https://doi.org/10.1016/j.apsoil.2020.103783

    Article  Google Scholar 

  • Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549:269–272. https://doi.org/10.1038/nature23679

    Article  CAS  Google Scholar 

  • Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, Herbold C, Stein LY, Richter A, Wissel H (2019) Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun 10:1836. https://doi.org/10.1038/s41467-019-09790-x

    Article  CAS  Google Scholar 

  • Liu WX, Shen LF, Liu JW, Wang YW, Li SR (2007) Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull Environ Contam Toxicol 79:209–213

    Article  CAS  Google Scholar 

  • Liu T, Wang Z, Wang S, Zhao Y, Wright AL, Jiang X (2019) Responses of ammonia-oxidizers and comammox to different long-term fertilization regimes in a subtropical paddy soil. Eur J Soil Biol 93:103087. https://doi.org/10.1016/j.ejsobi.2019.103087

    Article  CAS  Google Scholar 

  • Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health B 45:348–359. https://doi.org/10.1080/10934520903467873

    Article  CAS  Google Scholar 

  • Lu S, Sun Y, Lu B, Zheng D, Xu S (2020) Change of abundance and correlation of Nitrospira inopinata-like comammox and populations in nitrogen cycle during different seasons. Chemosphere 241:125098. https://doi.org/10.1016/j.chemosphere.2019.125098

    Article  CAS  Google Scholar 

  • Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D et al (2009) Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME J 3:916–923

    Article  CAS  Google Scholar 

  • Nahar K, Ali MM, Khanom A, Alam MK, Md. Abul Kalam Azad MAK, Rahman MM (2020) Levels of heavy metal concentrations and their effect on net nitrification rates and nitrifying archaea/bacteria in paddy soils of Bangladesh. Appl Soil Ecol 156:103697. https://doi.org/10.1016/j.apsoil.2020.103697

    Article  Google Scholar 

  • Nicomrat D, Jharajk J, Kanthang P (2016) Pesticides contaminated in Rice Paddy soil affecting on cultivated microorganism community. Appl Mech Mater 848:135–138. https://doi.org/10.4028/www.scientific.net/AMM.848.135

    Article  Google Scholar 

  • Pajares S, Bohannan BJ (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    Google Scholar 

  • Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF (2018) Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J 12:1779. https://doi.org/10.1038/s41396-018-0083-3

    Article  Google Scholar 

  • Pandey A, Suter H, He JZ, Hu HW, Chen D (2018) Nitrogen addition decreases dissimilatory nitrate reduction to ammonium in rice paddies. Appl Environ Microbiol 84(17):e00870-e918

    Article  CAS  Google Scholar 

  • Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A et al (2017) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol 8:1508

    Article  Google Scholar 

  • Rahman MM, Azad AK, Sima SN et al (2014a) Role of RNase on microbial community analysis in the rice and wheat plants soil by 16S rDNA-DGGE. J Crop Sci Biotechnol 17:229–237. https://doi.org/10.1007/s12892-014-0071-8

    Article  Google Scholar 

  • Rahman MM, Basaglia M, Vendramin E, Boz B, Fontana F, Gumiero B, Casella S (2014b) Bacterial diversity of a wooded riparian strip soil specifically designed for enhancing denitrification process. Biol Fertil Soils 50:25–35

    Article  Google Scholar 

  • Rahman F, Rahman MM, Rahman GKMM, Saleque MA, Hossain ATMS, Miah MG (2016) Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice-rice cropping pattern. Carbon Manag 7(1–2):41–53

    Article  CAS  Google Scholar 

  • Rahman MM, Shan J, Yang P, Shang X, Xia Y, Yan X (2018) Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environ Pollut 240:368–377

    Article  CAS  Google Scholar 

  • Rahman MM, Nahar K, Ali MM, Sultana N, Karim MM, Adhikari UK, Rauf M, Azad MAK (2020) Effect of long-term pesticides and chemical fertilizers application on the microbial community specifically anammox and denitrifying bacteria in Rice field soil of Jhenaidah and Kushtia district, Bangladesh. Bull Environ Contam Toxicol 104:828–833

    Article  CAS  Google Scholar 

  • Sato Y, Ohta H, Yamagishi T, Guo Y, Nishizawa T, Rahman MH, Kuroda H, Kato T, Saito M, Yoshinaga I, Inubushi K, Suwa Y (2012) Detection of anammox activity and 16S rRNA genes in ravine paddy field soil. Microbes Environ 27(3):316–319

    Article  Google Scholar 

  • Shan J, Zhao X, Sheng R, Xia Y, Ti C, Quan X, Wang S, Wei W, Yan X (2016) Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions and influencing factors. Environ Sci Technol 50:9972–9980

    Article  CAS  Google Scholar 

  • Shan J, Yang P, Shang X et al (2018) Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon, and substrates. Biol Fertil Soils 54:341–348. https://doi.org/10.1007/s00374-018-1263-z

    Article  CAS  Google Scholar 

  • Shen LD, Liu S, Huang Q, Lian X, He ZF, Geng S, Jin RC, He YF, Lou LP, Xu XY, Zheng P, Hu BL (2014) Evidence for the co-occurrence of nitrite dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Appl Environ Microbiol 80:7611–7619. https://doi.org/10.1128/AEM.02379-14

    Article  CAS  Google Scholar 

  • Sheng R, Meng DL, Wu MN, Di HJ, Qin HL, Wei WX (2013) Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers. J Soils Sediments 13:1246–1256. https://doi.org/10.1007/s11368-013-0713-3

    Article  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. App Environ Microbiol 73:3612–3622

    Article  CAS  Google Scholar 

  • Smolders E, Brans K, Coppens F, Merckx R (2001) Potential nitrification rate as a tool for screening toxicity in metal-contaminated soils. Environ Toxicol Chem 20(12):2469–2474

    Article  CAS  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25(4):303–335

    Article  CAS  Google Scholar 

  • Timilsina A, Bizimana F, Pandey B, Yadav R, Dong W, Hu C (2020) Nitrous oxide emissions from paddies: understanding the role of rice plants. Plants (Basel, Switzerland) 9(2):180. https://doi.org/10.3390/plants9020180

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33:566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • van Kessel M, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, Jetten MSM, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  Google Scholar 

  • Wackett LP (2015) Nitrogen fixation in microbial biotechnology. Microb Biotechnol 8:896–897. https://doi.org/10.1111/1751-7915.12313

    Article  Google Scholar 

  • Wang H, Li X, Li X, Li X, Wang J, Zhang H (2017) Changes of microbial population and N cycling function genes with depth in three Chinese paddy soils. PLoS ONE 12(12):e0189506. https://doi.org/10.1371/journal.pone.0189506

    Article  CAS  Google Scholar 

  • Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z, Jiang X (2019) Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biol Biochem 135:392–395

    Article  CAS  Google Scholar 

  • Welsh A, Chee-Sanford JC, Connor LM, Löffler FE, Sanford RA (2014) Refined nrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Microbiol 80:2110–2119. https://doi.org/10.1128/AEM.03443-13

    Article  CAS  Google Scholar 

  • Wu Y, Lu L, Wang B, Lin X, Zhu J, Cai Z, Yan X, Jia Z (2011) Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil. Soil Sci Soc Am J 75:1431–1439. https://doi.org/10.2136/sssaj2010.0434

    Article  CAS  Google Scholar 

  • Yang XR, Li H, Nie SA, Su JQ, Weng BS, Zhu GB, Yao HY, Gilbert JA, Zhu YG (2015) Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Appl Environ Microbiol 81:938–947. https://doi.org/10.1128/AEM.02664-14

    Article  CAS  Google Scholar 

  • Zabaloy MC, Allegrini M, Tebbe DA, Schuster K, Gomez EDV (2017) Nitrifying bacteria and archaea withstanding glyphosate in fertilized soil microcosms. Appl Soil Ecol 117–118:88–95

    Article  Google Scholar 

  • Zhu GB, Wang SY, Wang Y, Wang CX, Risgaard-Petersen N, Jetten MSM, Yin CQ (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905–1912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Patti Fisher, Professional Editor, World LLC for checking the paper’s English and grammatical errors. The authors thank the University Grant Commission (UGC) Bangladesh and Islamic University, Kushtia-7003 (141/Edu/IU-2019/331) and the Ministry of Science and Technology, Bangladesh (390000000090602419/ES-373) for partial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mizanur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Khanom, A. & Biswas, S.K. Effect of Pesticides and Chemical Fertilizers on the Nitrogen Cycle and Functional Microbial Communities in Paddy Soils: Bangladesh Perspective. Bull Environ Contam Toxicol 106, 243–249 (2021). https://doi.org/10.1007/s00128-020-03092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-03092-5

Keywords

Navigation