Skip to main content

Advertisement

Log in

Plasma angiopoietin-2 levels increase in children following cardiopulmonary bypass

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim was to investigate the effects of cardiopulmonary bypass (CPB) on plasma levels of the vascular growth factors, angiopoietin (angpt)-1, angpt-2, and vascular endothelial growth factor (VEGF).

Design

The design was a prospective, clinical investigation.

Setting

The setting was a 12-bed pediatric cardiac intensive care unit of a tertiary children’s medical center.

Patients

The patients were 48 children (median age, 5 months) undergoing surgical correction or palliation of congenital heart disease who were prospectively enrolled following informed consent.

Interventions

There were no interventions in this study.

Measurements and results

Plasma samples were obtained at baseline and at 0, 6, and 24 h following CPB. Angpt-1, angpt-2, and VEGF levels were measured via commercial ELISA. Angpt-2 levels increased by 6 h (0.95, IQR 0.43–2.08 ng mL−1 vs. 4.62, IQR 1.16–6.93 ng mL−1, P < 0.05) and remained significantly elevated at 24 h after CPB (1.85, IQR 0.70–2.76 ng mL−1; P < 0.05). Angpt-1 levels remained unchanged immediately after CPB, but were significantly decreased at 24 h after CPB (0.64, IQR 0.40–1.62 ng mL−1 vs. 1.99, IQR 1.23–2.63 ng mL−1, P < 0.05). Angpt-2 levels correlated significantly with cardiac intensive care unit (CICU) length of stay (LOS) and were an independent predictor for CICU LOS on subsequent multivariate analysis.

Conclusions

Angpt-2 appears to be an important biomarker of adverse outcome following CPB in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tarnok A, Schneider P (2001) Pediatric cardiac surgery with cardiopulmonary bypass: pathways contributing to transient systemic immune suppression. Shock 16:24–32

    PubMed  Google Scholar 

  2. Wan S, LeClerc JL, Vincent JL (1997) Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112:676–692

    Article  PubMed  CAS  Google Scholar 

  3. Zhang S, Wang S, Li Q, Yao S, Zeng B, Ziegelstein RC, Hu Q (2005) Capillary leak syndrome in children with C4A-deficiency undergoing cardiac surgery with cardiopulmonary bypass: a double-blind, randomised controlled study. Lancet 366:556–562

    Article  PubMed  CAS  Google Scholar 

  4. Wheeler DS, Dent CL, Manning PB, Nelson DP (2008) Factors prolonging length of stay in the cardiac intensive care unit following the arterial switch operation. Cardiol Young 18:41–50

    Article  PubMed  Google Scholar 

  5. Brown KL, Ridout DA, Goldman AP, Hoskote A, Penny DJ (2003) Risk factors for long intensive care unit stay after cardiopulmonary bypass in children. Crit Care Med 31:28–33

    Article  PubMed  Google Scholar 

  6. van Dongen EI, Glandsorp AG, Mildner RJ, McCrindle BW, Sakopoulos AG, VanArdsell G, Williams WG, Bohn D (2003) The influence of perioperative factors on outcomes in children aged less than 18 months after repair of tetralogy of Fallot. J Thorac Cardiovasc Surg 126:703–710

    Article  PubMed  Google Scholar 

  7. Newburger JW, Wypij D, Bellinger DC, du Plessis AJ, Kuban KC, Rappaport LA, Almirall D, Wessel DL, Jonas RA, Wernovsky G (2003) Length of stay after infant heart surgery is related to cognitive outcome at age 8 years. J Pediatr 143:67–73

    Article  PubMed  Google Scholar 

  8. Seghave MC, Grabitz RG, Duchateau J, Busse S, Dabritz S, Koch D, Alzen G, Hornchen H, Messmer BJ, Von Bernuth G (1996) Inflammatory reaction and capillary leak syndrome related to cardiopulmonary bypass in neonates undergoing cardiac operations. J Thorac Cardiovasc Surg 112:687–697

    Article  Google Scholar 

  9. Abrahamov D, Erez E, Tamariz M, Dagan O, Pearl E, Abrahamov Y, Gendel B, Desai N, Kats J, Vidne B, Barak V (2002) Plasma vascular endothelial growth factor level is a predictor of the severity of postoperative capillary leak syndrome in neonates undergoing cardiopulmonary bypass. Pediatr Surg Int 18:54–59

    Article  PubMed  CAS  Google Scholar 

  10. Starnes SL, Duncan BW, Kneebone JM, Rosenthal GL, Jones TK, Grifka RG, Cecchin F, Owens DJ, Fearneyhough C, Lupinetti FM (2000) Vascular endothelial growth factor and basic fibroblast growth factor in children with cyanotic congenital heart disease. J Thorac Cardiovasc Surg 119:534–539

    Article  PubMed  CAS  Google Scholar 

  11. Himeno WH, Akagi T, Furui J, Maeno Y, Ishii M, Kosai K, Murohara T, Kato H (2003) Increased angiogenic growth factor in cyanotic congenital heart disease. Pediatr Cardiol 24:127–132

    Article  PubMed  CAS  Google Scholar 

  12. Ootaki Y, Yamaguchi M, Yoshimura N, Oka S, Yoshida M, Hasegawa T (2003) Vascular endothelial growth factor in children with congenital heart disease. Ann Thorac Surg 75:1523–1526

    Article  PubMed  Google Scholar 

  13. Brindle NPJ, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023

    Article  PubMed  CAS  Google Scholar 

  14. Witzenbichler B, Westermann D, Knueppel S, Schultheiss HP, Tschope C (2005) Protective role of angiopoietin-1 in endotoxic shock. Circulation 111:97–105

    Article  PubMed  CAS  Google Scholar 

  15. Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, Sukhatme VP (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3:e46

    Article  PubMed  Google Scholar 

  16. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239

    Article  PubMed  CAS  Google Scholar 

  17. Chong AY, Caine GJ, Freestone B, Blann AD, Lip GYH (2004) Plasma angiopoietin-1, angiopoietin-2, and angiopoietin receptor Tie-2 levels in congestive heart failure. J Am Coll Cardiol 43:423–428

    Article  PubMed  CAS  Google Scholar 

  18. Lee KW, Lip GYH, Blann AD (2004) Plasma angiopoietin-1, angiopoietin-2, angiopoietin receptor Tie-2, and vascular endothelial growth factor levels in acute coronary syndromes. Circulation 110:2355–2360

    Article  PubMed  CAS  Google Scholar 

  19. Giuliano JS Jr, Lahni PM, Bigham MT, Nelson DP, Manning PB, Bogenshutz L, VanVliet T, Wong HR, Wheeler DS (2007) Angiopoietin expression in children following cardiopulmonary bypass. Circulation 116:II-515

    Google Scholar 

  20. Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123:110–118

    Article  PubMed  Google Scholar 

  21. Wernovsky G, Wypij D, Jonas RA, Mayer JEJ, Hanley FL, Hickey PR, Walsh AZ, Chang AC, Castaneda AR, Newburger JW (1995) Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bpyass and circulatory arrest. Circulation 92:2226–2235

    PubMed  CAS  Google Scholar 

  22. Schroeder VA, Pearl JM, Schwartz SM, Shanley TP, Manning PB, Nelson DP (2003) Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation 107:2823–2828

    Article  PubMed  CAS  Google Scholar 

  23. Kozik DJ, Tweddell JS (2006) Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 81:S2347–S2354

    Article  PubMed  Google Scholar 

  24. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103:4150–4156

    Article  PubMed  CAS  Google Scholar 

  25. Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100:2072–2078

    Article  PubMed  CAS  Google Scholar 

  26. Verrier ED, Morgan EN (1998) Endothelial response to cardiopulmonary bypass surgery. Ann Thorac Surg 66:S17–S19

    Article  PubMed  CAS  Google Scholar 

  27. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99:11205–11210

    Article  PubMed  CAS  Google Scholar 

  28. Kim I, Moon SO, Park SK, Chae SW, Koh GY (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89:477–479

    Article  PubMed  CAS  Google Scholar 

  29. Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 314:738–744

    Article  PubMed  CAS  Google Scholar 

  30. Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S, Dimopoulou I, Sotiropoulou C, Zakynthinos S, Armaganidis A, Papapetropoulos A, Roussos C (2007) Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med 35:199–206

    Article  PubMed  CAS  Google Scholar 

  31. Giuliano JS Jr, Lahni PM, Harmon K, Wong HR, Doughty LA, Carcillo JA, Zingarelli B, Sukhatme VP, Parikh SM, Wheeler DS (2007) Admission angiopoietin levels in children with septic shock. Shock 28:650–654

    PubMed  CAS  Google Scholar 

  32. Thompson LD, McElhinney DB, Findlay P, Miller-Hance W, Chen MJ, Minami M, Petrossian E, Parry AJ, Reddy VM, Hanley FL (2001) A prospective, randomized study comparing volume-standardized modified and conventional ultrafiltration in pediatric cardiac surgery. J Thorac Cardiovasc Surg 122:220–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like thank Tracey VanVliet and Lois Bogenschutz in the Cardiology research department at Cincinnati Children’s Hospital for their assistance with this project. The study was supported by the National Institutes of Health KO8 GM077432 (DSW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek S. Wheeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliano, J.S., Lahni, P.M., Bigham, M.T. et al. Plasma angiopoietin-2 levels increase in children following cardiopulmonary bypass. Intensive Care Med 34, 1851–1857 (2008). https://doi.org/10.1007/s00134-008-1174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1174-9

Keywords

Navigation