Skip to main content
Log in

Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness

  • What's New in Intensive Care
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Batt J, Dos Santos CC, Cameron JI, Herridge MS (2013) Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med 187:238–246

    Article  PubMed  Google Scholar 

  2. Kalamgi RC, Larsson L (2016) Mechanical signaling in the pathophysiology of critical illness myopathy. Front Physiol 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  3. Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L (2015) The sick and the weak: neuropathies/myopathies in the critically ill. Physiol Rev 95:1025–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45(10):2121–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314

    Article  CAS  PubMed  Google Scholar 

  6. Li YP, Reid MB (2000) NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol 279:R1165–R1170

    CAS  PubMed  Google Scholar 

  7. Li YP, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB (2003) TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 17:1048–1057

    Article  CAS  PubMed  Google Scholar 

  8. Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB (2005) TNF-alpha acts via P38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 19:362–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hussain SN, Mofarrahi M, Sigala I et al (2010) Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 182:1377–1386

    Article  CAS  PubMed  Google Scholar 

  10. Vanhorebeek I, Gunst J, Derde S et al (2011) Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab 96:E633–E645

    Article  CAS  PubMed  Google Scholar 

  11. Puthucheary ZA, Rawal J, McPhail M et al (2013) Acute skeletal muscle wasting in critical illness. JAMA 310:1591–1600

    Article  CAS  PubMed  Google Scholar 

  12. Fischer D, Gang G, Pritts T, Hasselgren PO (2000) Sepsis-induced muscle proteolysis is prevented by a proteasome inhibitor in vivo. Biochem Biophys Res Commun 270:215–221

    Article  CAS  PubMed  Google Scholar 

  13. Vana PG, Laporte HM, Wong YM, Kennedy RH, Gamelli RL, Majetschak M (2016) Proteasome inhibition after burn injury. J Burn Care Res 37:207–215

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bach HH, Laporte HM, Wong YM, Gamelli RL, Majetschak M (2013) Proteasome inhibition prolongs survival during lethal hemorrhagic shock in rats. J Trauma Acute Care Surg 74:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for MtDNA stability in skeletal muscle and tolerance of MtDNA mutations. Cell 141:280–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romanello V, Guadagnin E, Gomes L et al (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29:1774–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romanello V, Sandri M (2015) Mitochondrial quality control and muscle mass maintenance. Front Physiol 6:422

    PubMed  Google Scholar 

  18. Rudolf R, Deschenes MR, Sandri M (2016) Neuromuscular junction degeneration in muscle wasting. Curr Opin Clin Nutr Metab Care 19:177–181

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu Y, Chu W, Chai J, Li X, Liu L, Ma L (2016) Critical role of miRNAs in mediating skeletal muscle atrophy (review). Mol Med Rep 13:1470–1474

    Article  CAS  PubMed  Google Scholar 

  20. Dos Santos C, Hussain SN, Mathur S et al (2016) Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am J Respir Crit Care Med 194:821–830

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Batt.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batt, J., Herridge, M. & dos Santos, C. Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness. Intensive Care Med 43, 1844–1846 (2017). https://doi.org/10.1007/s00134-017-4758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-017-4758-4

Keywords

Navigation