Skip to main content
Log in

\(I_0\) and combinatorics at \(\lambda ^+\)

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We investigate the compatibility of \(I_0\) with various combinatorial principles at \(\lambda ^+\), which include the existence of \(\lambda ^+\)-Aronszajn trees, square principles at \(\lambda \), the existence of good scales at \(\lambda \), stationary reflections for subsets of \(\lambda ^{+}\), diamond principles at \(\lambda \) and the singular cardinal hypothesis at \(\lambda \). We also discuss whether these principles can hold in \(L(V_{\lambda +1})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-David, S., Magidor, M.: The weak \(\square ^{\ast } \) is really weaker than the full \(\square \). J. Symb. Logic 51(4), 1029–1033 (1986). doi:10.2307/2273914

    Article  MathSciNet  MATH  Google Scholar 

  2. Cramer, S.S.: Inverse Limit Reflection and the Structure of \({L}({V}_{\lambda +1})\) (2014). http://www.math.rutgers.edu/~ssc127/papers/i0reflection (submitted)

  3. Cramer, S.S.: Generic Absoluteness from Tree Representations in \({L}({V}_{\lambda +1})\) Cardinals (2015). http://www.math.rutgers.edu/~ssc127/papers/genabs (submitted)

  4. Cramer, S.S.: Inverse limit reflection and the structure of \(L(V_{\lambda +1})\). J. Math. Log. 15(1), 1550001 (2015). doi:10.1142/S0219061315500014

  5. Cummings, J.: Notes on singular cardinal combinatorics. Notre Dame J. Form. Logic 46(3), 251–282 (2005). doi:10.1305/ndjfl/1125409326. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cummings, J.: Iterated forcing and elementary embeddings. In: Handbook of Set Theory, vols. 1, 2, 3, pp. 775–883. Springer, Dordrecht (2010). doi:10.1007/978-1-4020-5764-9_13

  7. Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Log. 1(1), 35–98 (2001). doi:10.1142/S021906130100003X

    Article  MathSciNet  MATH  Google Scholar 

  8. Devlin, K.J.: Constructibility. Perspectives in Mathematical Logic. Springer, Berlin (1984)

    Google Scholar 

  9. Dimonte, V., Friedman, S.D.: Rank-into-rank hypotheses and the failure of GCH. Arch. Math. Logic 53(3–4), 351–366 (2014). doi:10.1007/s00153-014-0369-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Dimonte, V., Wu, L.: A general tool for consistency results related to I1. Eur. J. Math. 2(2), 474–492 (2016). doi:10.1007/s40879-015-0092-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Gitik, M.: Prikry-type forcings. In: Handbook of Set Theory, vols. 1, 2, 3, pp. 1351–1447. Springer, Dordrecht (2010). doi:10.1007/978-1-4020-5764-9_17

  12. Gitik, M., Magidor, M.: The singular cardinal hypothesis revisited. In: Set Theory of the Continuum (Berkeley, CA, 1989), Mathematical Sciences Research Institute Publications, vol. 26, pp. 243–279. Springer, New York (1992)

  13. Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308; erratum, ibid. 4 (1972), 443 (1972). http://www.math.cmu.edu/~laiken/papers/FineStructure. With a section by Jack Silver

  14. Kanamori, A.: The Higher Infinite, 2nd edn. Springer Monographs in Mathematics. Springer, Berlin (2003). Large cardinals in set theory from their beginnings

  15. Kunen, K., Prikry, K.: On descendingly incomplete ultrafilters. J. Symb. Logic 36, 650–652 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Laver, R.: Reflection of elementary embedding axioms on the \(L[V_{\lambda +1}]\) hierarchy. Ann. Pure Appl. Logic 107(1–3), 227–238 (2001). doi:10.1016/S0168-0072(00)00035-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Magidor, M., Shelah, S.: The tree property at successors of singular cardinals. Arch. Math. Logic 35(5–6), 385–404 (1996). doi:10.1007/s001530050052

    Article  MathSciNet  MATH  Google Scholar 

  18. Merimovich, C.: Prikry on extenders, revisited. Isr. J. Math. 160, 253–280 (2007). doi:10.1007/s11856-007-0063-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Shelah, S.: On successors of singular cardinals. In: Logic Colloquium ’78 (Mons, 1978), Studies in Logic and the Foundations of Mathematics, vol. 97, pp. 357–380. North-Holland, Amsterdam (1979)

  20. Shelah, S.: Cardinal Arithmetic, Oxford Logic Guides, vol. 29. The Clarendon Press/Oxford University Press, New York (1994). Oxford Science Publications

  21. Shi, X.: Axiom \({I}_0\) and higher degree theory. J. Symb. Logic 80(3), 970–1021 (2015). doi:10.1017/jsl.2015.15. http://journals.cambridge.org/abstract_S0022481215000158

  22. Solovay, R.M.: Strongly compact cardinals and the GCH. In: Proceedings of the Tarski Symposium (Proceedings of Symposia in Pure Mathematics, Vol. XXV, University of California, Berkeley, CA, 1971), pp. 365–372. American Mathematical Society, Providence (1974)

  23. Solovay, R.M., Reinhardt, W.N., Kanamori, A.: Strong axioms of infinity and elementary embeddings. Ann. Math. Logic 13(1), 73–116 (1978). doi:10.1016/0003-4843(78)90031-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Woodin, W.H.: Notes on an AD-Like Axiom (1990). Seminar Notes Taken by George Kafkoulis

  25. Woodin, W.H.: Suitable extender models II: beyond \(\omega \)-huge. J. Math. Logic 11(2), 115–436 (2011). http://www.worldscientific.com/doi/pdf/10.1142/S021906131100102X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghui Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Trang, N. \(I_0\) and combinatorics at \(\lambda ^+\) . Arch. Math. Logic 56, 131–154 (2017). https://doi.org/10.1007/s00153-016-0518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-016-0518-3

Keywords

Mathematics Subject Classification

Navigation