Skip to main content
Log in

Maximum-entropy principle for nonlinear hydrodynamic transport in semiconductors

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We present, in a strong nonlinear context, a full-band hydrodynamic approach by using the first 13 moments of the distribution function in the framework of extended thermodynamics. Following this approach we show that: (1) the full-band effects of the band structure are described accurately up to high electric fields both in homogeneous and nonhomogeneous conditions; (2) the effectiveness of the dissipation processes can be properly investigated, in homogeneous conditions, only in a strong nonlinear context; and (3) the hyperbolicity region of the system is very large, also in the nonlinear conditions. In this way, by using a strong nonlinear closure, it is possible to describe accurately the transport phenomena in submicron devices, when very high electric fields and field gradients occur (E ≈ 220 kV/cm, E/(dE/dx) ≈ 100 Å).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruzhinskis V., Starikov E., Shiktorov P., Reggiani L., Saranniti M. and Varani L. (1993). Hydrodynamic analysis of DC and AC hot-carrier transport in semiconductors. Semicond. Sci. Technol. 7: 1283–1290

    Article  Google Scholar 

  2. Rudan M., Vecchi M. and Ventura D. (1995). Mathematical problems in semiconductor physics, of Pitman research notes, 186. In: Marcati, P., Markowich, P., and Natalini, R. (eds) Mathematical Series. Longman, Oxford

    Google Scholar 

  3. Trovato, M., Falsaperla, P.: Full nonlinear closure for a hydrodynamic model of transport in silicon. Phys. Rev. B 57, 4456–4471 (1998) Erratum: Phys. Rev. B 57, 12617–12617

    Google Scholar 

  4. Trovato M., Falsaperla P. and Reggiani L. (1999). Maximum entropy principle for nonparabolic hydrodynamic transport in semiconductor devices. J. Appl. Phys. 86: 5906–5908

    Article  Google Scholar 

  5. Anile A.M. and Romano V. (1999). Non parabolic band transport in semiconductors: closure of the moment equations. Cont. Mechan. Thermodyn. 11: 307–325

    Article  MATH  MathSciNet  Google Scholar 

  6. Struchtrup H. (2000). Extended moment method for electrons in semiconductors. Physica A 275: 229–255

    Article  Google Scholar 

  7. Liotta S.F. and Struchtrup H. (2000). Moment equations for electrons in semiconductors: comparison of spherical harmonics and full moments. Solid State Elect. 44: 95–103

    Article  Google Scholar 

  8. Trovato M. and Reggiani L. (2000). Maximum entropy principle within a total energy scheme: application to hot-carrier transport in semiconductors. Phys. Rev. B 61: 16667–16681

    Article  Google Scholar 

  9. Trovato, M., Reggiani, L.: Maximum-entropy principle for static and dynamic high-field transport in semiconductors. Phys. Rev. B 73, 245209-1-17 (2006)

    Google Scholar 

  10. Canali C., Jacoboni C., Nava F., Ottaviani G. and Alberigi-Quaranta A. (1975). Electron drift velocity in silicon. Phys. Rev. B 12: 2265–2284

    Article  Google Scholar 

  11. Jacoboni C. and Reggiani L. (1983). The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55: 645–705

    Article  Google Scholar 

  12. Fischetti M. (1991). Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures—part i: homogeneous transport. IEEE, Trans. Electron. Dev. 38: 634–649

    Article  Google Scholar 

  13. Martin M.J., Gonzalez T., Velasquez J.E. and Pardo D. (1993). Simulation of electron transport in silicon: impact-ionization processes. Semicond. Sci. Technol. 8: 1291–1297

    Article  Google Scholar 

  14. Das A. and Lundstrom M.S. (1990). A scattering matrix approach to device simulation. Solid-State Electron. 33: 1299–1307

    Article  Google Scholar 

  15. Kometer K., Zandler G. and Vogl P. (1992). Lattice-gas cellular-automaton method for semiclassical transport in semiconductors. Phys. Rev. B 46: 1382–1394

    Article  Google Scholar 

  16. Müller I. and Ruggeri T. (1998). Rational Extended Thermodynamics.: Springer Tracts in Natural Philosophy, vol. 37. Springer, New York

    Google Scholar 

  17. Dreyer W. (1987). Maximisation of the entropy in non-equilibrium. J. Phys. A: Math. Gen 20: 6505–6517

    Article  MathSciNet  Google Scholar 

  18. Boillat G. and Ruggeri T. (1997). Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9: 205–212

    Article  MATH  MathSciNet  Google Scholar 

  19. Jaynes E.T. (1957). Information theory and statistical mechanics. Phys. Rev. 106: 620–630

    Article  MathSciNet  Google Scholar 

  20. Jou D., Casas-Vasquez J. and Lebon G. (1998). Extended Irreversible Thermodynamics. Springer, Berlin

    Google Scholar 

  21. Grad H. (1958). Principles of the kinetic theory of gases. In: Flugge, S. (eds) Handbuch der Physik XII. Springer, Berlin

    Google Scholar 

  22. Boots H.M.J. (1992). Electron-temperature concept at very high electric fields. Phys. Rev. B 46: 9428–9433

    Article  Google Scholar 

  23. Shur M. (1990). Physics of Semiconductor Devices. Prentice Hall, Englewood Cliffs

    Google Scholar 

  24. Varani L., Vaissiere J.C., Nougier J.P., Houlet P., Reggiani L., Starikov E., Shiktorov P., Gruzhinskis V. and Hlou L. (1995). A model hyperfrequency differential-mobility for nonlinear transport in semiconductors. J. Appl. Phys. 77: 665–675

    Article  Google Scholar 

  25. Reggiani L., Starikov E., Shiktorov P., Gruzhinskis V. and Varani L. (1997). Modelling of small-signal response and electronic noise in semiconductor high-field transport. Semicond. Sci. Technol. 12: 141–156

    Article  Google Scholar 

  26. Kuhn T., Reggiani L. and Varani L. (1990). Correlation functions and electronic noise in doped semiconductors. Phys. Rev. B 42: 11133–11146

    Article  Google Scholar 

  27. Smith P.M., Inoue M. and Jeffrey F. (1980). Electron velocity in Si and GaAs at very high electric fields. Appl. Phys. Lett. 37: 797–798

    Article  Google Scholar 

  28. Nessyahu H. and Tadmor E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87: 408–463

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trovato.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trovato, M., Falsaperla, P. Maximum-entropy principle for nonlinear hydrodynamic transport in semiconductors. Continuum Mech. Thermodyn. 19, 511–532 (2008). https://doi.org/10.1007/s00161-008-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0070-4

Keywords

PACS

Navigation