Skip to main content
Log in

Linear and nonlinear double diffusive convection in a rotating sparsely packed porous layer using a thermal non-equilibrium model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Double diffusive convection in a fluid-saturated rotating porous layer is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and nonlinear stability analyses. The Brinkman model that includes the Coriolis term is employed as the momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for the energy equation. The onset criterion for stationary, oscillatory, and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal diffusion, solute diffusion, and rotation that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number, and Taylor number on the stability of the system is investigated. The nonlinear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amahmid A., Hasnaoui M., Mamou M., Vasseur P.: Double-diffusive parallel flow induced in a horizontal Brinkman porous layer subjected to constant heat and mass fluxes: analytical and numerical studies. Heat Mass Transf. 35, 409–421 (1999)

    Article  Google Scholar 

  2. Bahloul A., Boutana N., Vasseur P.: Double diffusive and Soret-induced convection in a shallow horizontal porous layer. J. Fluid Mech. 491, 325–352 (2003)

    Article  MATH  Google Scholar 

  3. Banu N., Rees D.A.S.: Onset of Darcy-Benard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  MATH  Google Scholar 

  4. Baytas A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase non-Darcy porous medium. Int. J. Energy Res. 27, 975–988 (2003)

    Article  Google Scholar 

  5. Baytas A.C.: Thermal non-equilibrium free convection in a cavity filled with a non-Darcy porous medium. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media, pp. 247–258. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  6. Baytas A.C., Pop I.: Free convection in a square porous cavity using a thermal non-equilibrium model, Int. J. Therm. Sci. 41, 861–870 (2002)

    Article  Google Scholar 

  7. Chakrabarti A., Gupta A.S.: Nonlinear thermohaline convection in a rotating porous medium. Mech. Res. Commun. 8, 9–15 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Galdi G.P., Payne L.E., Proctor M.R.E., Straughan B.: Convection in thawing subsea permafrost. Proc. R. Soc. Lond. A 414, 83–102 (1987)

    Article  MATH  Google Scholar 

  9. Guo J., Kaloni P.N.: Nonlinear stability problem of a rotating doubly diffusive porous layer. J. Math. Anal. Appl. 190, 373–390 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hill A.A.: Double-diffusive convection in a porous medium with a concentration based internal heat source. Proc. R. Soc. Lond. A 461, 561–574 (2005)

    Article  MATH  Google Scholar 

  11. Horton W., Rogers F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hutter K., Straughan B.: Penetrative convection in thawing subsea permafrost. Continuum Mech. Thermodyn. 9, 259–272 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hutter K., Straughan B.: Models for convection in thawing porous media in support for the subsea permafrost equations. J. Geophys. Res. 104(B12), 29249–29260 (1999)

    Article  Google Scholar 

  14. Ingham D.B., Pop I.: Transport Phenomena in Porous Media. Pergamon, Oxford (1998)

    MATH  Google Scholar 

  15. Ingham D.B., Pop I.: Transport Phenomena in Porous Media, Vol. III. Elsevier, Oxford (2005)

    Google Scholar 

  16. Joseph D.D.: Global stability of the conduction-diffusion solution. Arch. Rational Mech. Anal. 36, 285–292 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karimi-Fard M., Charrier-Mojtabi M.C., Mojtabi A.: Onset of stationary and oscillatory convection in a tilted porous cavity saturated with binary fluid: Linear stability analysis. Phys. Fluids 11(6), 1346–1358 (1999)

    Article  MATH  Google Scholar 

  18. Kuznetsov A.V.: A perturbation solution for a non-thermal equilibrium fluid flow through a three-dimensional sensible storage packed bed. Trans. ASME J. Heat Transf. 118, 508–510 (1996)

    Article  Google Scholar 

  19. Kuznetsov A.V.: Thermal non-equilibrium forced convection in porous Media. In: Ingham, D.B., Pop, I. (eds) Transport Phenomenon in Porous Media, pp. 103–130. Pergamon, Oxford (1998)

    Chapter  Google Scholar 

  20. Lapwood E.R.: Convection of a fluid in a porous medium. Proc. Cambridge Phil. Soc. 44, 508–521 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lombardo S., Mulone G.: Necessary and sufficient conditions of global nonlinear stability for rotating double-diffusive convection in a porous medium. Continuum Mech. Thermodyn. 14, 527–540 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Malashetty M.S.: Anisotropic thermo convective effects on the onset of double diffusive convection in a porous medium. Int. J. Heat Mass Transf. 36, 2397–2401 (1993)

    Article  MATH  Google Scholar 

  23. Malashetty M.S., Heera R. (2008) The onset of double diffusive convection in a sparsely packed porous layer using a thermal non-equilibrium model. Acta Mech. doi:10.1007/s00707-008-0036-4

  24. Malashetty M.S., Heera R.: Linear and non-linear double diffusive convection in rotating porous layer using a thermal non-equilibrium model. Int. J. Non Linear Mech. 43, 600–621 (2008)

    Article  Google Scholar 

  25. Malashetty, M.S., Swamy, M.S.: Linear stability analysis for a rotating Brinkman porous layer using a thermal non-equilibrium model. Int. J. Heat Mass Transf. (2009, submitted)

  26. Malashetty M.S., Shivakumara I.S., Sridhar K.: The onset of Lapwood-Brinkman convection using a thermal non- equilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)

    Article  Google Scholar 

  27. Malashetty M.S., Shivakumara I.S., Sridhar K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Media 60, 199–215 (2005)

    Article  Google Scholar 

  28. Malashetty M.S., Swamy M.S., Heera R.: Double diffusive convection in a porous layer using a thermal non-equilibrium model. Int. J. Therm. Sci. 47, 1131–1147 (2008)

    Article  Google Scholar 

  29. Malashetty, M.S., Swamy, M.S., Sridhar, K.: Thermal convection in a rotating porous layer using a thermal non-equilibrium model. Phys. Fluids 19, 054102, pp. 1–16 (2007)

    Google Scholar 

  30. Mamou M.: Stability analysis of double–diffusive convection in porous enclosures. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media II, pp. 113–154. Elsevier, Oxford (2002)

    Chapter  Google Scholar 

  31. Mamou M., Vasseur P.: Thermosolutal bifurcation phenomena in porous enclosures subject to vertical temperature and concentration gradients. J. Fluid Mech. 395, 61–87 (1999)

    Article  MATH  Google Scholar 

  32. Mamou M., Vasseur P., Hasnaoui M.: On numerical stability analysis of double diffusive convection in confined enclosures. J. Fluid Mech. 433, 209–250 (2001)

    MATH  Google Scholar 

  33. Mojtabi A., Charrier-Mojtabi M.C.: Double-diffusive convection in porous media. In: Vafai, K. (eds) Handbook of Porous Media, pp. 559–603. Marcel Dekker, New York (2000)

    Google Scholar 

  34. Mojtabi A., Charrier-Mojtabi M.C.: Double-diffusive convection in porous media. In: Vafai, K. (eds) Handbook of Porous media, 2nd edn, pp. 269–320. Taylor and Francis, New York (2005)

    Google Scholar 

  35. Mulone G.: On the nonlinear stability of a fluid layer of a mixture heated and salted from below. Continuum Mech. Thermodyn. 6, 161–184 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mulone G., Straughan B.: An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media. ZAMM 86, 507–520 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Murray B.T., Chen C.F.: Double diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)

    Article  Google Scholar 

  38. Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553–560 (1968)

    Article  Google Scholar 

  39. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer-Verlag (2006)

  40. Patil P.R., Parvathy C.P., Venkatakrishnan K.S.: Thermohaline instability in a rotating anisotropic porous medium. Appl. Sci. Res. 46, 73–88 (1989)

    Article  MATH  Google Scholar 

  41. Payne L.E., Song J.C., Straughan B.: Double diffusive porous penetrative convection. Int. J. Eng. Sci. 26, 797–809 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  42. Poulikakos D: Double diffusive convection in a horizontally sparsely packed porous layer. Int. Commun. Heat Mass Transf. 13, 587–598 (1986)

    Article  Google Scholar 

  43. Rees D.A.S., Pop I.: Local thermal non-equilibrium in porous medium convection. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media, Vol. III, pp. 147–173. Elsevier, Oxford (2005)

    Chapter  Google Scholar 

  44. Rudraiah N., Malashetty M.S.: The influence of coupled molecular diffusion on the double diffusive convection in a porous medium. ASME J. Heat Transf. 108, 872–876 (1986)

    Article  Google Scholar 

  45. Rudraiah N., Shivakumara I.S., Friedrich R.: The effect of rotation on linear and nonlinear double diffusive convection in a sparsely packed porous medium Int. J. Heat Mass Transf. 29, 1301–1317 (1986)

    Article  MATH  Google Scholar 

  46. Rudraiah N., Srimani P.K., Friedrich R: Finite amplitude convection in a two component fluid saturated porous layer. Heat Mass Transf. 25, 715–722 (1982)

    Article  MATH  Google Scholar 

  47. Saeid N.H.: Analysis of mixed convection in a vertical porous layer using non-equilibrium model. Int. J. Heat Mass Transf. 47, 5619–5627 (2004)

    Article  MATH  Google Scholar 

  48. Straughan B: A sharp nonlinear stability threshold in rotating porous convection. Proc. R. Soc. Lond. A 457, 87–93 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  49. Straughan B.: The Energy Method, Stability and Nonlinear Convection, 2nd edn, Ser. Appl. Math. Sci., Vol. 91. Springer, New York (2004)

    Google Scholar 

  50. Straughan B: Global non-linear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A 462, 409–418 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Straughan B.: Stability and Wave Motion in Porous Media, Ser. Appl. Math. Sci., Vol. 165. Springer, New York (2008)

    Google Scholar 

  52. Straughan B., Hutter K.: A priori bounds and structural stability for double diffusive convection incorporating the Soret effect. Proc. R. Soc. Lond. A 455, 767–777 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  53. Taslim M.E., Narusawa U: Binary fluid composition and double diffusive convection in porous medium. J. Heat Mass Transf. 108, 221–224 (1986)

    Article  Google Scholar 

  54. Vadasz P.: Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376, 351–375 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Malashetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malashetty, M.S., Pop, I. & Heera, R. Linear and nonlinear double diffusive convection in a rotating sparsely packed porous layer using a thermal non-equilibrium model. Continuum Mech. Thermodyn. 21, 317–339 (2009). https://doi.org/10.1007/s00161-009-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0117-1

Keywords

PACS

Navigation