Skip to main content

Advertisement

Log in

Conjugated kinetic and kinematic measures for constitutive modeling of the thermoelastic continua

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, the energy-type terms such as the stress power, the rate of the heat transferred to the system and the rate of the specific internal energy are presented in the Lagrangian, Eulerian and two-point descriptions for thermoelastic continua. In order to solve a problem based on the energy viewpoint, the mechanical, thermal and thermo-mechanical tensors conjugate to the Seth–Hill strains, and a general class of Lagrangian, Eulerian and two-point strain tensors are determined. Also, the energy pairs for thermoelastic continua are simplified for special cases of isentropic and isothermal deformation processes as well as the so-called entropic elastic materials (rubber-like materials and elastomers). At the end, a strain energy density function of the Saint Venant–Kirchhoff type in terms of different strain measures and temperature is considered for modeling the thermo-mechanical behavior of the rubber-like materials and elastomers. It is shown that this constitutive modeling can give results which are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macvean D.B.: Die Elementararbeit in einem Kontinuum und die Zuordnung von Spannungs- und Verzerrungstensoren. ZAMP 19, 157 (1968)

    Article  MATH  ADS  Google Scholar 

  2. Hill R.: Aspects of invariance in solid mechanics. Adv. Appl. Mech. 18, 1–75 (1978)

    MATH  Google Scholar 

  3. Hill R.: On constitutive inequalities for simple materials-I. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  MATH  ADS  Google Scholar 

  4. Guo Z.H., Dubey R.N.: Basic aspects of Hill’s method in solid mechanics. SM Arch. 9, 353–380 (1984)

    MATH  Google Scholar 

  5. Hoger A.: The stress conjugate to logarithmic strain. Int. J. Solids Struct. 23, 1645–1656 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wang W.B., Duan Z.P.: On the invariant representation of spin tensors with applications. Int. J. Solids Struct. 27, 329–341 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Xiao H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. Int. J. Solids Struct. 32, 3327–3340 (1995)

    Article  MATH  Google Scholar 

  8. Dui G., Ren Q.: Conjugate stress of strain E (3) = (U 3I)/3. Mech. Res. Commun. 26, 529–534 (1999)

    Article  MATH  Google Scholar 

  9. Dui G., Ren Q., Shen Z.: Conjugate stresses to Seth’s strain class. Mech. Res. Commun. 27, 539–542 (2000)

    Article  MATH  Google Scholar 

  10. Farahani K., Naghdabadi R.: Conjugate stresses of Seth–Hill strain tensors. Int. J. Solids Struct. 37, 5247–5255 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farahani K., Naghdabadi R.: Basis free relations for the conjugate stress of the strain based on the right stretch tensor. Int. J. Solids Struct. 40, 5887–5900 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Curnier A., Rakotomanana L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. (Polish Academy of Sciences) 39, 461–538 (1991)

    MathSciNet  Google Scholar 

  13. Ogden R.W.: On Eulerian and Lagrangean objectivity in continuum mechanics. Arch. Mech. 36, 207–218 (1984)

    MATH  MathSciNet  Google Scholar 

  14. Lehmann T., Liang H.Y.: The stress conjugate to the logarithmic strain. ln V Z. Angew. Math. Mech. 73, 357–363 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nicholson D.W.: On stress conjugate to Eulerian strains. Acta Mech. 165, 87–98 (2003)

    Article  MATH  Google Scholar 

  16. Nicholson D.W.: On stress conjugate to Eulerian strains. Acta Mech. 169, 225–226 (2004)

    Article  Google Scholar 

  17. Asghari M., Naghdabadi R., Sohrabpour S.: Stresses conjugate to the Jaumann rate of Eulerian strain measures. Acta Mech. 190, 45–56 (2007)

    Article  MATH  Google Scholar 

  18. Xiao H., Bruhns O.T., Meyers A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xiao H., Bruhns O.T., Meyers A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50, 1015–1045 (1998)

    MATH  MathSciNet  Google Scholar 

  20. Xiao H., Bruhns O.T., Meyers A.: On objective corotational rates and their defining spin tensors. Int. J. Solids Struct. 35, 4001–4014 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiao H., Bruhns O.T., Meyers A.: Strain rates and material spins. J. Elast. 52, 1–41 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xiao H., Bruhns O.T., Meyers A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  23. Bruhns O.T.: The Prandtl-Reuss equations revisited. ZAMM Z. Angew. Math. Mech. 94, 187–202 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Darijani H., Naghdabadi R.: Constitutive modeling of solids at finite, deformation using a second-order stress–strain relation. Int. J. Eng. Sci. 48, 223–236 (2010)

    Article  Google Scholar 

  25. Darijani H., Naghdabadi R., Kargarnovin M.H.: Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc. IMechE Part C J. Mech. Eng. Sci. 224, 591–602 (2010)

    Article  Google Scholar 

  26. Darijani H., Naghdabadi R.: Kinematics and kinetics modeling of thermoelastic continua based on the multiplicative decomposition of the deformation gradient. Int. J. Eng. Sci. 62, 56–69 (2013)

    Article  MathSciNet  Google Scholar 

  27. Holzapfel G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  28. Truesdell, C., Noll, W. : Non-linear field theories of mechanics. In: Flugge, S. (ed.) Encyclopedia of Physics, vol. III/3, Springer, New York (1965)

  29. Armanni G.: Sulle deformazioni finite dei solidi elastici isotropi. Il Nuovo Cimento. 9, 427–447 (1915)

    Article  Google Scholar 

  30. Batra R.C.: Linear constitutive relations in isotropic finite elasticity. J. Elast. 51, 243–245 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Batra R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001)

    Article  MATH  ADS  Google Scholar 

  32. Nader J.J.: Linear response in finite elasticity. J. Elast. 73, 165–172 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chiskis A., Parnes R.: Linear stress–strain relations in nonlinear elasticity. Acta Mech. 146, 109–113 (2001)

    Article  MATH  Google Scholar 

  34. Murphy J.G.: Linear isotropic relations in finite hyperelasticity: some general results. J. Elast. 86, 139–154 (2007)

    Article  MATH  Google Scholar 

  35. Gilchrist M.D., Murphy J.G., Rashid B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012)

    Article  ADS  Google Scholar 

  36. Bruhns O.T., Xiao H., Meyers A.: Hencky’s elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods. Arch. Mech. 52, 489–509 (2000)

    MATH  MathSciNet  Google Scholar 

  37. Bruhns O.T., Xiao H., Meyers A.: Constitutive inequalities for an isotropic elastic strain–energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soci. Lond. A. 457, 2207–2226 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Xiao H., Bruhns O.T., Meyers A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric hencky strain and cauchy stress. Acta Mech. 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  39. Xiao H., Chen L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002)

    Article  MATH  Google Scholar 

  40. Anand L.: On H. Hencky’s, approximate strain-energy function for moderate deformations. ASME J. Appl. Mech. 46, 78–82 (1979)

    Article  MATH  ADS  Google Scholar 

  41. Joule J.P.: On some thermo-dynamic properties of solids. Philos. Trans. R. Soc. Lond. A 149, 91–131 (1859)

    Article  Google Scholar 

  42. Anthony R.L., Coston R.H., Guth E.: Equations or state for natural and synthetic rubber-like materials. I. J. Phys. Chem. 46, 826–840 (1942)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Darijani.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darijani, H. Conjugated kinetic and kinematic measures for constitutive modeling of the thermoelastic continua. Continuum Mech. Thermodyn. 27, 987–1008 (2015). https://doi.org/10.1007/s00161-014-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0393-2

Keywords

Navigation