Skip to main content
Log in

Vortex ring modelling of toroidal bubbles

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

During the collapse of a bubble near a surface, a high-speed liquid jet often forms and subsequently impacts upon the opposite bubble surface. The jet impact transforms the originally singly-connected bubble to a toroidal bubble, and generates circulation in the flow around it. A toroidal bubble simulation is presented by introducing a vortex ring seeded inside the bubble torus to account for the circulation. The velocity potential is then decomposed into the potential of the vortex ring and a remnant potential. Because the remnant potential is continuous and satisfies the Laplace equation, it can be modelled by the boundary-integral method, and this circumvents an explicit domain cut and associated numerical treatment. The method is applied to study the collapse of gas bubbles in the vicinity of a rigid wall. Good agreement is found with the results of Best (J. Fluid Mech. 251 79–107, 1993), obtained by a domain cut method. Examination of the pressure impulse on the wall during jet impact indicates that the high-speed liquid jet has a significant potential for causing damage to a surface. There appears to be an optimal initial distance where the liquid jet is most damaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin, T.B., Ellis, A.T.: The collapse of cavitation bubbles and pressure thereby produced against solid boundary. Philos. Trans. R. Soc. Lond. A. 260, 221–240 (1966)

    Article  ADS  Google Scholar 

  2. Guerri, L., Lucca, G., Prosperetti, A.: A numerical method for the dynamics of non-spherical cavitation bubbles, Proc. 2nd Int. Colloq. on Drops and Bubbles, p. 175. CA (1981)

  3. Blake, J.R., Taib, B.B., Doherty, G.: Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479 (1986)

    MATH  Google Scholar 

  4. Baker, G.R., Moore, D.W.A.: The rise and distortion of a two-dimensional gas bubble in an inviscid liquid. Phys. of Fluids. 1(9), 1451 (1989)

    MathSciNet  ADS  MATH  Google Scholar 

  5. Best, J.P., Kucera, A.: A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137 (1992)

    ADS  MATH  Google Scholar 

  6. Brujan, E.A., Keen, G.S., Vogel, A., Blake, J.R.: The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. of Fluids. 14(1), 85 (2002)

    Article  ADS  Google Scholar 

  7. Blake, J.R., Gibson, D.C.: Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123 (1981)

    ADS  Google Scholar 

  8. Blake, J.R., Taib, B.B., Doherty, G.: Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197 (1987)

    Google Scholar 

  9. Blake, J.R., Hooton, M.C., Robinson, P.B., Tong, P.R.: Collapsing cavities, toroidal bubbles and jet impact. Philos. Trans. R. Soc. Lond. A 355, 537–550 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y.: Strong interaction between buoyancy bubble and free surface. Theoret. and Comput. Fluid Dynamics 8, 73–88 (1996a)

    MATH  Google Scholar 

  11. Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y.: Nonlinear interaction between gas bubble and free surface. Computers & Fluids 25, No. 7, 607 (1996b)

    Article  MATH  Google Scholar 

  12. Chahine, G.L.: Numerical modeling of the dynamic behavior of bubble in nonuniform flow field. In: ASME Symp. on Numerical Methods for Multiphase Flows, Toronto (1990)

  13. Chahine, G.L., Perdue, T.O.: Simulation of the three dimensional behaviour of an unsteady large bubble near a structure. In: Wang, T.G. (ed.) Drops and Bubbles, 3rd Int. Colloq., Monterey, CA, pp. 188–199. Amer. Inst. of Phys. (1988)

  14. Wilkerson, S.A.: A boundary integral approach to three dimensional underwater explosion bubble dynamics. Ph.D. Dissertation, Johns Hopkins University, Baltimore, MD (1990)

    Google Scholar 

  15. Harris, P.J.: A numerical model for determining the motion of a bubble close to a fixed rigid structure in a fluid. Int. J. Numer. Methods Eng. 33, 1813 (1992)

    Article  MATH  Google Scholar 

  16. Harris, P.J.: A numerical method for predicting the motion of a bubble close to a moving rigid structure. Commun. Numer. Methods Eng. 9, 81 (1993)

    MATH  Google Scholar 

  17. Wang, Q.X.: The numerical analyses of the evolution of a gas bubble near an inclined wall. Theoret. & Comput. Fluid Dynamics 12, 29–51 (1998)

    MATH  Google Scholar 

  18. Wang, Q.X.: Numerical simulation of violent bubble motion. Phys. of Fluids 16(5), 1610–1619 (2004)

    Google Scholar 

  19. Pozrikidis, C.: Numerical simulation of three-dimensional bubble oscillations by a generalized vortex method theoret. and comput. Fluid Dynamics 16(2), 151–169 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Wang, C., Khoo, B.C.: An indirect boundary element method for three-dimensional explosion bubbles. J. Comput. Phys. 194 (2), 451–480 (2004)

    ADS  MATH  Google Scholar 

  21. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145 (1977)

    Article  ADS  Google Scholar 

  22. Blake, J.R., Gibson, D.C.: Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99–123 (1987)

    Article  ADS  Google Scholar 

  23. Best, J.P.: The formulation of toroidal bubbles upon collapse of transient cavities. J. Fluid Mech. 251, 79–107 (1993)

    MATH  ADS  Google Scholar 

  24. Best, J.P.: The rebound of toroidal bubbles. In: Blake, J.R., Boulton-Stone, J.M., Thomas, N.H. (eds.) Bubble Dynamics and Interface Phenomena, Fluid Mechanics and its Applications, vol. 23, pp. 405–412. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  25. Pearson, A., Cox, E., Blake, J.R., Otto, S.R.: Bubble interactions near a free surface. Eng. Anal. Bound. Elem. 28(4), 295–313 (2004a)

    Article  MATH  Google Scholar 

  26. Pearson, A., Blake, J.R., Otto, S.R.: Jets in bubbles. J Eng. Math. 48(3–4), 391–412 (2004b)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, S., Duncan, J.H., Chahine, G.L.: The final stage of the collapse of a cavitation bubble near of a rigid wall. J. Fluid Mech. 257, 147–181 (1993)

    ADS  MATH  Google Scholar 

  28. Zhang, S., Duncan, J.H.: On the non-spherical collapse and rebound of cavitation bubble. Physics of Fluids 6(7), 2352–2362 (1994)

    Article  ADS  MATH  Google Scholar 

  29. Szymczak, W.G., Roger, J.C.W., Solomon, J.M., Berger, A.E.: A numerical algorithm for hydrodynamic free boundary problems. J. Comput. Phys. 106, 319–336 (1993)

    MathSciNet  ADS  MATH  Google Scholar 

  30. Pedley, T.J.: The toroidal bubble. J. Fluid Mech. 32, 97–112 (1968)

    MATH  ADS  Google Scholar 

  31. Lundgren, T.S., Mansour, N.N.: Vortex ring bubbles. J. Fluid Mech. 72, 391–399 (1991)

    Google Scholar 

  32. Taib, B.B.: Boundary integral methods applied to cavitation bubble dynamics. Ph.D. Thesis, Univ. of Wollongong, NSW, Australia (1985)

    Google Scholar 

  33. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, NY (1965)

  34. Birkhoff, G., Zarantonello, E.H.: Jet, Cavities and Wakes. Academy Press, NY (1957)

    Google Scholar 

  35. Keller, J.B., Milewski P.A., Vanden-Broeck, J.M.: Breaking and merging of liquid sheets and filaments. J. Eng. Math. 42(3–4), 283–290 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, Y.L., Yeo, K.S., Khoo, B.C., Wang, C.: 3D jet impact and toroidal bubbles. J. Comput. Phys. 166, 336–360 (2001)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. X. Wang.

Additional information

Communicated by J. R. Blake

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q.X., Yeo, K.S., Khoo, B.C. et al. Vortex ring modelling of toroidal bubbles. Theor. Comput. Fluid Dyn. 19, 303–317 (2005). https://doi.org/10.1007/s00162-005-0164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-005-0164-6

Keywords

Navigation