Skip to main content
Log in

Predicting transport by Lagrangian coherent structures with a high-order method

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Recent developments in identifying Lagrangian coherent structures from finite-time velocity data have provided a theoretical basis for understanding chaotic transport in general flows with aperiodic dependence on time. As these theoretical developments are extended and applied to more complex flows, an accurate and general numerical method for computing these structures is needed to exploit these ideas for engineering applications. We present an unstructured high-order hp/spectral-element method for solving the two-dimensional compressible form of the Navier–Stokes equations. A corresponding high-order particle tracking method is also developed for extracting the Lagrangian coherent structures from the numerically computed velocity fields. Two different techniques are used; the first computes the direct Lyapunov exponent from an unstructured initial particle distribution, providing easier resolution of structures located close to physical boundaries, whereas the second advects a small material line initialized close to a Lagrangian saddle point to delineate these structures. We demonstrate our algorithm on simulations of a bluff-body flow at a Reynolds number of Re = 150 and a Mach number of M = 0.2 with and without flow forcing. We show that, in the unforced flow, periodic vortex shedding is predicted by our numerical simulations that is in stark contrast to the aperiodic flow field in the case with forcing. An analysis of the Lagrangian structures reveals a transport barrier that inhibits cross-wake transport in the unforced flow. The transport barrier is broken with forcing, producing enhanced transport properties by chaotic advection and consequently improved mixing of advected scalars within the wake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aref H., El Naschie M.S. (1995) Chaos Applied to Fluid Mixing. Pergamon, New York

    MATH  Google Scholar 

  2. Benzi R., Paladin G., Patarnello S., Santangelo P., Vulpiani A. (1988) Self-similar coherent structures in two-dimensional decaying turbulence. J. Phys. A 21, 1221–1237

    Article  ADS  Google Scholar 

  3. McWilliams J.C. (1984) The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 21–43

    Article  MATH  ADS  Google Scholar 

  4. Babiano A., Basdevant C., Le Roy P., Sadourny R. (1990) Relative dispersion in two-dimensional turbulence. J. Fluid Mech. 214, 535–557

    Article  MATH  ADS  Google Scholar 

  5. Provenzale A. (1999) Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech. 31, 55–93

    Article  MathSciNet  ADS  Google Scholar 

  6. Ottino J.M. (1989) The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Rom-Kedar V., Leonard A., Wiggins S. (1990) An analytical study of transport, mixing, and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347–358

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Rom-Kedar V. (1994) Homoclinic tangles – classification and applications. Nonlinearity 7, 441–473

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Wiggins S. (1992) Chaotic Transport in Dynamical Systems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  10. Malhotra N., Wiggins S. (1998) Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time-dependence, with applications to Rossby wave flow. J. Nonlin. Sci. 8, 401–456

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Coulliette C., Wiggins S. (2001) Intergyre transport in a wind-driven, quasi-geostrophic double gyre: an application of lobe dynamics. Nonlin. Proc. Geophys. 8, 69

    ADS  Google Scholar 

  12. Haller G., Poje A.C. (1998) Finite-time transport in aperiodic flows. Physica D 119, 352

    Article  MathSciNet  ADS  Google Scholar 

  13. Miller P.D., Jones C.K.R.T., Rogerson A.M., Pratt L.J. (1997) Quantifying transport in numerically generated velocity fields. Physica D 110, 105

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Rogerson A.M., Miller P.D., Pratt L.J., Jones C.K.R.T. (1999) Lagrangian motion and fluid exchange in a barotropic meandering jet. J. Phys. Oceanogr. 29: 2635

    Article  MathSciNet  ADS  Google Scholar 

  15. Jones C.K.R.T., Winkler S. (2002) Invariant manifolds and Lagrangian dynamics in the ocean and atmosphere. In: Fiedler B., (eds). Handbook of Dynamical Systems III: Towards Applications, vol 2. North-Holland, Amsterdam, pp. 55–92

    Google Scholar 

  16. Haller G. (2001) Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13, 3365–3385

    Article  MathSciNet  ADS  Google Scholar 

  17. Shariff K., Pulliam T.H., Ottino J.M. (1991) A dynamical systems analysis of kinematics in the time-periodic wake of a circular cylinder. Lect. Appl. Math. 28, 613–646

    MATH  MathSciNet  Google Scholar 

  18. Yuster T., Hackborn W.W. (1997) On invariant manifolds attached to oscillating boundaries of Stokes flows. Chaos 7, 769–776

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Haller G. (2004) Exact theory of unsteady separation for two-dimensional flows. J. Fluid Mech. 512, 257–311

    Article  MATH  ADS  Google Scholar 

  20. Patera A.T. (1984) A spectral element method for fluid dynamics. J. Comput. Phys. 54, 468–488

    Article  MATH  ADS  Google Scholar 

  21. Karniadakis G.E., Sherwin S.J. (1999) Spectral/hp Element Methods for CFD. Numerical Mathematics and ScientificComputation, Clarendon, Oxford

    Google Scholar 

  22. Duan J., Wiggins S. (1997) Lagrangian transport and chaos in the near wake of the flow around an obstacle: a numerical implementation of lobe dynamics. Nonlin. Proc. Geophys. 4, 125–136

    Article  ADS  Google Scholar 

  23. Wang Y., Haller G., Banaszuk A., Tadmor G. (2003) Closed-loop Lagrangian separation control in a bluff body shear flow model. Phys. Fluids 15, 2251–2266

    Article  MathSciNet  ADS  Google Scholar 

  24. Bassi F., Rebay S. (2000) A high order discontinuous galerkin method for compressible turbulent flows. In: Cockburn B., Karniadakis G.E., Shu C.-W. (eds). Discontinuous Galerkin Methods: Theory, Computation and Applications Lecture. Notes in Computational Science and Engineering. Springer, Berlin Heidelberg New York

    Google Scholar 

  25. Hesthaven J.S. (1999) A stable penalty method for the compressible Navier–Stokes equations. III. Multi-dimensional domain decomposition schemes. SIAM J. Sci. Comp. 20, 62–93

    Article  MATH  MathSciNet  Google Scholar 

  26. Proriol J. (1957) Sur une Famille de Polynomes à deux Variables Orthogonaux dans un Triangle. C. R. Acad. Sci. Paris 257, 2459–2461

    MathSciNet  Google Scholar 

  27. Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Theory and Application of Special Functions. Askey, R.A. (ed) Academic, New York 435–495 (1975)

  28. Szegö G. (1939) Orthogonal polynomials. Colloquium Publications, vol. 23. American Mathematical Society, Providence

    Google Scholar 

  29. Hesthaven J.S. (1998) From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35, 655–676

    Article  MATH  MathSciNet  Google Scholar 

  30. Hesthaven J.S., Teng C.H. (2000) Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comp. 21, 2352–2380

    Article  MATH  MathSciNet  Google Scholar 

  31. Gottlieb D., Hesthaven J.S. (2000) Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131

    Article  MathSciNet  Google Scholar 

  32. Carpenter, M.H., Kennedy, C.A.: Fourth order 2 N-storage Runge–Kutta scheme. NASA-TM-109112, NASA Langley Research Center, VA (1994)

  33. Xiu D., Karniadakis G.E. (2001) A semi-lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Coppola G., Sherwin S.J., Peiró J. (2001) Non-linear particle tracking for high-order elements. J. Comput. Phys. 172, 356–380

    Article  MATH  ADS  Google Scholar 

  35. Drazin P.G., Reid W.H. (1984) Hydrodynamic Stability. Cambridge University Press, Cambridge

    Google Scholar 

  36. Drazin P.G. (2002) Introduction to Hydrodynamic Stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  37. Criminale W.O., Jackson T.L., Joslin R.D. (2003) Theory and Computation of Hydrodynamic Stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  38. Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8, (1996)

  39. Maslen, S.H.: On fully developed channel flows: some solutions and limitations, and effects of compressibility, variable properties, and body forces. NACA TN 4319, September (1958)

  40. Raffoul, C.N., Nejad, A.S., Gould, R.D., Boehman, L.: Simultaneous 3D LDV measurements in the near field downstream of a bluff body. In: Twelfth International Symposium on Air Breathing Engines, Melbourne, Australia, vol.2, pp. 1045–1055 (1995)

  41. Min C., Choi H. (1999) Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 401, 123

    Article  MATH  ADS  Google Scholar 

  42. Park D.S., Ladd D.M., Hendricks E.W. (1994) Feedback control of von Karman vortex shedding behind a circular cylinder at low Reynolds numbers. Phys. Fluids. 6: 2390

    Article  MATH  ADS  Google Scholar 

  43. Gunzburger M.D., Lee H.C. (1996) Feedback control of Karman vortex shedding. J. Appl. Mech. 63, 828

    MATH  Google Scholar 

  44. Karniadakis G.E., Triantafyllou G.S. (1989) Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441–469

    Article  MATH  ADS  Google Scholar 

  45. He J.W., Glowinski R., Metcalfe R., Nordlander A., Periaux J. (2000) Active control and drag optimization for flow past a circular cylinder. J. Comput. Phys. 163, 83

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Homescu C., Navon I.M., Li Z. (2002) Suppression of vortex shedding for flow around a circular cylinder using optimal control. Int. J. Numer. Methods. Fluids 38, 43

    Article  MATH  ADS  Google Scholar 

  47. Blackburn H.M., Henderson R.D. (1999) A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Haller G. (2001) Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D 149, 248–277

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Hirsch C. (1990) Numerical Computation of Internal and External Flows: Volume 1 – Fundamentals of Numerical Discretisation. Wiley, New York

    Google Scholar 

  50. Voth G.A., Haller G., Gollub J. (2002) Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett. 88, 254501

    Article  ADS  Google Scholar 

  51. van Dyke, M.: Album of Fluid Motion. Parabolic Press, (1982)

  52. Perry A.E., Chong M.S., Lim T.T. (1982) The vortex shedding process behind two-dimensional bluff bodies. J. Fluid Mech. 116, 77–90

    Article  ADS  Google Scholar 

  53. Williamson C.H.K. (1996) Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayder Salman.

Additional information

Communicated by M.Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salman, H., Hesthaven, J.S., Warburton, T. et al. Predicting transport by Lagrangian coherent structures with a high-order method. Theor. Comput. Fluid Dyn. 21, 39–58 (2007). https://doi.org/10.1007/s00162-006-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0031-0

Keywords

Navigation