Skip to main content
Log in

Global transition dynamics of flow in a lid-driven cubical cavity

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a fully three-dimensional lid-driven cubical cavity (3D-LDC) flow at several post-critical conditions, i.e., beyond the first bifurcation, are elucidated using both linear and nonlinear analyses. When the Reynolds number is increased beyond the critical value, symmetry breaks down intermittently with subsequent gradual growth in spanwise inhomogeneity. This results in crossflow as well as pronounced secondary flow due to enhanced imbalance between centrifugal and pressure forces. Thus, while a stable solution is obtained at \(\hbox {Re}=1900\) (Reynolds number based on lid velocity and cavity side length), nonlinear analysis identifies intermittent and nearly saturated regimes at \(\hbox {Re}=2100\) and \(\hbox {Re}=3000\), respectively. These changes in the regime are examined by considering five basic states at different Reynolds numbers starting from \(\hbox {Re}=1900\). At the lowest Reynolds number, linear analysis yields only symmetric modes, characterized by Taylor–Görtler-like (TGL) vortices. However, at \(\hbox {Re}=2100\), the intermittent breakdown of symmetry results in the emergence of an antisymmetric low-frequency mode apart from primary high-frequency mode. The frequencies of both these modes are numerically close to those obtained from corresponding nonlinear simulations. When the Reynolds number is increased even further, the TGL structures drift under the influence of the crossflow to occupy the previously structureless region near the wall. The frequency of each mode decreases with increase in \(\hbox {Re}\); between 1900 and 3000, the frequency of the primary mode changes by more than 20%. Furthermore, the spatial support of each mode becomes larger within the cavity. Both primary and secondary modes are increasingly destabilized with \(\hbox {Re}\); however, the secondary antisymmetric mode is destabilized at a higher rate. The current study thus provides a comprehensive picture of the overall dynamics of 3D-LDC flows in pre- and post-bifurcation regimes in an extended \(\hbox {Re}\) range not considered hitherto.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Albensoeder, S., Kuhlmann, H., Rath, H.: Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids 13(1), 121–135 (2001)

    Article  Google Scholar 

  2. Anupindi, K., Lai, W., Frankel, S.: Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method. Comput. Fluids 92, 7–21 (2014)

    Article  MathSciNet  Google Scholar 

  3. Barkley, D.: Linear analysis of the cylinder wake mean flow. EPL (Europhys. Lett.) 75(5), 750 (2006)

    Article  MathSciNet  Google Scholar 

  4. Beneddine, S., Sipp, D., Arnault, A., Dandois, J., Lesshafft, L.: Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485–504 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bengana, Y., Loiseau, J.C., Robinet, J.C., Tuckerman, L.: Bifurcation analysis and frequency prediction in shear-driven cavity flow. J. Fluid Mech. 875, 725–757 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bhaumik, S., Gaitonde, D.V., Unnikrishnan, S., Sinha, A., Shen, H.: Verification and application of a mean flow perturbation method for jet noise. Aerosp. Sci. Technol. 80, 520–540 (2018)

    Article  Google Scholar 

  7. Canuto, D., Taira, K.: Two-dimensional compressible viscous flow around a circular cylinder. J. Fluid Mech. 785, 349–371 (2015)

    Article  MathSciNet  Google Scholar 

  8. Crouch, J., Garbaruk, A., Magidov, D.: Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224(2), 924–940 (2007)

    Article  MathSciNet  Google Scholar 

  9. Erturk, E.: Discussions on driven cavity flow. Int. J. Numer. Methods Fluids 60(3), 275–294 (2009)

    Article  MathSciNet  Google Scholar 

  10. Feldman, Y.: Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity. Theor. Comput. Fluid Dyn. 29(4), 245–261 (2015)

    Article  Google Scholar 

  11. Feldman, Y., Gelfgat, A.Y.: Oscillatory instability of a three-dimensional lid-driven flow in a cube. Phys. Fluids 22(9), 093602 (2010). https://doi.org/10.1063/1.3487476

    Article  Google Scholar 

  12. Ferrer, E., de Vicente, J., Valero, E.: Low cost 3d global instability analysis and flow sensitivity based on dynamic mode decomposition and high-order numerical tools. Int. J. Numer. Methods Fluids 76(3), 169–184 (2014)

    Article  MathSciNet  Google Scholar 

  13. Gaitonde, D.V., Visbal, M.R.: High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. Technical Report, Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate (1998)

  14. Gelfgat, A.Y.: Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections. Comput. Fluids 97, 143–155 (2014)

    Article  MathSciNet  Google Scholar 

  15. Gelfgat, A.Y.: Linear instability of the lid-driven flow in a cubic cavity. Theor. Comput. Fluid Dyn. 33(1), 59–82 (2019)

    Article  MathSciNet  Google Scholar 

  16. Giannetti, F., Luchini, P., Marino, L.: Linear stability analysis of three-dimensional lid-driven cavity flow. In: Atti del XIX Congresso AIMETA di Meccanica Teorica e Applicata, Aras Edizioni Ancona, Italy, pp. 14–17 (2009)

  17. Gómez, F., Gómez, R., Theofilis, V.: On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aerosp. Sci. Technol. 32(1), 223–234 (2014). https://doi.org/10.1016/j.ast.2013.10.006

    Article  Google Scholar 

  18. Gudmundsson, K., Colonius, T.: Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97–128 (2011)

    Article  Google Scholar 

  19. Guiho, F., Alizard, F., Robinet, J.C.: Global stability analysis with compressible CFD solver. In: 43rd Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics (2013). https://doi.org/10.2514/6.2013-2620

  20. Iwatsu, R., Ishii, K., Kawamura, T., Kuwahara, K., Hyun, J.M.: Numerical simulation of three-dimensional flow structure in a driven cavity. Fluid Dyn. Res. 5(3), 173 (1989)

    Article  Google Scholar 

  21. Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26(2), 024103 (2014)

    Article  Google Scholar 

  22. Karban, U., Bugeat, B., Martini, E., Towne, A., Cavalieri, A.V.G., Lesshafft, L., Agarwal, A., Jordan, P., Colonius, T.: Ambiguity in mean-flow-based linear analysis. J. Fluid Mech. 900, R5 (2020). https://doi.org/10.1017/jfm.2020.566

    Article  MathSciNet  MATH  Google Scholar 

  23. Koseff, J.R., Street, R.: On end wall effects in a lid-driven cavity flow. J. Fluids Eng. 106(4), 385–389 (1984)

    Article  Google Scholar 

  24. Koseff, J.R., Street, R.L.: Visualization studies of a shear driven three-dimensional recirculating flow. J. Fluids Eng. 106(1), 21–27 (1984). https://doi.org/10.1115/1.3242393

    Article  Google Scholar 

  25. Kuhlmann, H.C., Albensoeder, S.: Stability of the steady three-dimensional lid-driven flow in a cube and the supercritical flow dynamics. Phys. Fluids 26(2), 024104 (2014)

    Article  Google Scholar 

  26. Kuhlmann, H.C., Romanò, F.: The lid-driven cavity. In: Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, Springer, pp. 233–309 (2019)

  27. Liberzon, A., Feldman, Y., Gelfgat, A.Y.: Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity. Phys. Fluids 23(8), 084106 (2011)

    Article  Google Scholar 

  28. Loiseau, J.C.: Dynamics and global stability analysis of three-dimensional flows. Ph.D. thesis, Paris, ENSAM (2014)

  29. Loiseau, J.C., Robinet, J.C., Leriche, E.: Intermittency and transition to chaos in the cubical lid-driven cavity flow. Fluid Dyn. Res. 48(6), 061421 (2016). https://doi.org/10.1088/0169-5983/48/6/061421

    Article  MathSciNet  Google Scholar 

  30. Lopez, J.M., Welfert, B.D., Wu, K., Yalim, J.: Transition to complex dynamics in the cubic lid-driven cavity. Phys. Rev. Fluids 2(7), 074401 (2017)

    Article  Google Scholar 

  31. Mack, C.J., Schmid, P.J.: A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows. J. Comput. Phys. 229(3), 541–560 (2010)

    Article  MathSciNet  Google Scholar 

  32. Mantič-Lugo, V., Arratia, C., Gallaire, F.: Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113(8), 084501 (2014)

    Article  Google Scholar 

  33. Mattingly, G., Criminale, W.: The stability of an incompressible two-dimensional wake. J. Fluid Mech. 51(2), 233–272 (1972)

    Article  Google Scholar 

  34. Mettot, C., Sipp, D., Bézard, H.: Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control. Phys. Fluids 26(4), 061701 (2014)

    Article  Google Scholar 

  35. Mittal, S.: Global linear stability analysis of time-averaged flows. Int. J. Numer. Methods Fluids 58(1), 111–118 (2008)

    Article  MathSciNet  Google Scholar 

  36. Oberleithner, K., Rukes, L., Soria, J.: Mean flow stability analysis of oscillating jet experiments. J. Fluid Mech. 757, 1–32 (2014)

    Article  MathSciNet  Google Scholar 

  37. Ohmichi, Y., Suzuki, K.: Compressibility effects on the first global instability mode of the vortex formed in a regularized lid-driven cavity flow. Comput. Fluids 145, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  38. Paredes, P., Hermanns, M., Le Clainche, S., Theofilis, V.: Order \(10^4\) speedup in global linear instability analysis using matrix formation. Comput. Methods Appl. Mech. Eng. 253, 287–304 (2013)

    Article  Google Scholar 

  39. Park, J.S., Graham, M.D.: Exact coherent states and connections to turbulent dynamics in minimal channel flow. J. Fluid Mech. 782, 430–454 (2015)

    Article  MathSciNet  Google Scholar 

  40. Prasad, A.K., Koseff, J.R.: Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids A 1(2), 208–218 (1989)

    Article  Google Scholar 

  41. Ranjan, R., Unnikrishnan, S., Gaitonde, D.V.: A robust approach for stability analysis of complex flows using high-order Navier–Stokes solvers. J. Comput. Phys. 403, 109076 (2020). https://doi.org/10.1016/j.jcp.2019.109076

    Article  MathSciNet  MATH  Google Scholar 

  42. Samantaray, D., Das, M.K.: Nature of turbulence inside a cubical lid-driven cavity: effect of Reynolds number. Int. J. Heat Fluid Flow 80, 108498 (2019)

    Article  Google Scholar 

  43. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  44. Shankar, P., Deshpande, M.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32(1), 93–136 (2000)

    Article  MathSciNet  Google Scholar 

  45. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  46. Sipp, D., Lebedev, A.: Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358 (2007)

    Article  Google Scholar 

  47. Sipp, D., Marquet, O., Meliga, P., Barbagallo, A.: Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63(3), (2010)

  48. Sorensen, D.C.: Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations. In: Parallel Numerical Algorithms. Springer, pp. 119–165 (1997)

  49. Theofilis, V.: Globally unstable basic flows in open cavities. In: AIAA 6th Aeroacoustics Conference and Exhibit, p. 1965 (2000)

  50. Theofilis, V., Duck, P., Owen, J.: Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249–286 (2004)

    Article  MathSciNet  Google Scholar 

  51. Touber, E., Sandham, N.D.: Large-Eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23(2), 79–107 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based partly upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0228 (monitor: Gregg Abate). Simulations were carried out using resources provided by the US Department of Defense High Performance Computing Modernization Program and the Ohio Supercomputer Center. Several figures were made using FieldView software with licenses obtained from the Intelligent Light University Partnership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Ranjan.

Additional information

Communicated by Sergio Pirozzoli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based partly upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0228 (monitor: Gregg Abate).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Unnikrishnan, S., Robinet, JC. et al. Global transition dynamics of flow in a lid-driven cubical cavity. Theor. Comput. Fluid Dyn. 35, 397–418 (2021). https://doi.org/10.1007/s00162-021-00565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00565-z

Keywords

Navigation