Skip to main content
Log in

Calcium phosphate-hybridized tendon grafts reduce femoral bone tunnel enlargement in anatomic single-bundle ACL reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study aimed to clarify the effect of calcium phosphate (CaP)-hybridized tendon grafting versus unhybridized tendon grafting on the morphological changes to the bone tunnels at the aperture 1 year after anatomic single-bundle anterior cruciate ligament (ACL) reconstruction.

Methods

Seventy-three patients were randomized to undergo the CaP (n = 37) or the conventional method (n = 36). All patients underwent computed tomography (CT) evaluation 1 week and 1 year post-operatively. The femoral and tibial tunnels at the aperture were evaluated on reconstructed 3D CT images. Changes in the cross-sectional area (CSA) and diameters of the femur and the tibia, and the translation rate of the tunnel walls and the morphological changes of both tunnels were assessed.

Results

There was a significant reduction in the increase in the CSA and the anterior–posterior and proximal–distal tunnel diameters on the femoral side in the CaP group as compared with the conventional group. On the femoral side, the translation rate of the posterior wall was significantly larger in the CaP group than in the conventional group, whereas the translation rate of the distal wall was significantly smaller in the CaP group than in the conventional group.

Conclusions

As compared with the conventional method, the CaP-hybridized tendon graft reduced bone tunnel enlargement on the femoral side 1 year after anatomic single-bundle ACL reconstruction due to an anterior shift of the posterior wall and reduced distal shift in the femoral bone tunnel. Clinically, the CaP-hybridized tendon grafts can prevent femoral bone tunnel enlargement in anatomic single-bundle ACL reconstruction.

Level of evidence

I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altbuch T, Conrad BP, Shields E, Farmer KW (2013) Allograft swelling after preparation during ACL reconstruction: do we need to upsize tunnels? Cell Tissue Bank 14:673–677

    Article  PubMed  Google Scholar 

  2. Araki D, Kuroda R, Matsumoto T, Nagamune K, Matsushita T, Hoshino Y, Oka S, Nishizawa Y, Kurosaka M (2014) Three-dimensional analysis of bone tunnel changes after anatomic double-bundle anterior cruciate ligament reconstruction using multidetector-row computed tomography. Am J Sports Med 42:2234–2241

    Article  PubMed  Google Scholar 

  3. Berg EE, Pollard ME, Kang Q (2001) Interarticular bone tunnel healing. Arthroscopy 17:189–195

    Article  CAS  PubMed  Google Scholar 

  4. Fauno P, Kaalund S (2005) Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy 21:1337–1341

    Article  PubMed  Google Scholar 

  5. Feller JA, Webster KE (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31:564–573

    Article  PubMed  Google Scholar 

  6. Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S, Fu FH (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg 92-A:1418–1426

    Article  Google Scholar 

  7. Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    Article  CAS  PubMed  Google Scholar 

  8. Iorio R, Vadalà A, Argento G, Di Sanzo V, Ferretti A (2007) Bone tunnel enlargement after ACL reconstruction using autologous hamstring tendons: a CT study. Int Orthop 31:49–55

    Article  PubMed  Google Scholar 

  9. Iriuchishima T, Ryu K, Okano T, Suruga M, Aizawa S, Fu FH (2017) The evaluation of muscle recovery after anatomical single-bundle ACL reconstruction using a quadriceps autograft. Knee Surg Sports Traumatol Arthrosc 25:1449–1453

    Article  PubMed  Google Scholar 

  10. Järvelä T, Moisala AS, Paakkala T, Paakkala A (2008) Tunnel enlargement after double-bundle anterior cruciate ligament reconstruction: a prospective, randomized study. Arthroscopy 24:1349–1357

    Article  PubMed  Google Scholar 

  11. Kim D, Asai S, Moon CW, Hwang SC, Lee S, Keklikci K, Linde-Rosen M, Smolinski P, Fu FH (2015) Biomechanical evaluation of anatomic single- and double-bundle anterior cruciate ligament reconstruction techniques using the quadriceps tendon. Knee Surg Sports Traumatol Arthrosc 23:687–695

    Article  PubMed  Google Scholar 

  12. Kopf S, Forsythe B, Wong AK, Tashman S, Anderst W, Irrgang JJ, Fu FH (2010) Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am 92:1427–1431

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lim HC, Yoon YC, Wang JH, Bae JH (2012) Anatomical versus nonanatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability. Clin Orthop Surg 4:249–255

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mutsuzaki H, Fujie H, Nakajima H, Fukagawa M, Nomura S, Sakane M (2016) Effect of calcium phosphate hybridized tendon graft in anatomical single-bundle ACL reconstruction in goats. Orthop J Sports Med 4:2325967116662653

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mutsuzaki H, Kanamori A, Ikeda K, Hioki S, Kinugasa T, Sakane M (2012) Effect of calcium phosphate-hybridized tendon graft in anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med 40:1772–1780

    Article  PubMed  Google Scholar 

  16. Mutsuzaki H, Sakane M, Fujie H, Hattori S, Kobayashi H, Ochiai N (2011) Effect of calcium phosphate–hybridized tendon graft on biomechanical behavior in anterior cruciate ligament reconstruction in a goat model: novel technique for improving tendon-bone healing. Am J Sports Med 39:1059–1066

    Article  PubMed  Google Scholar 

  17. Mutsuzaki H, Sakane M, Ito A, Nakajima H, Hattori S, Miyanaga Y, Tanaka J, Ochiai N (2005) The interaction between osteoclast-like cells and osteoblasts mediated by nanophase calcium phosphate-hybridized tendons. Biomaterials 26:1027–1034

    Article  CAS  PubMed  Google Scholar 

  18. Mutsuzaki H, Sakane M, Nakajima H, Ito A, Hattori S, Miyanaga Y, Ochiai N, Tanaka J (2004) Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion. J Biomed Mater Res A 70A:319–327

    Article  CAS  Google Scholar 

  19. Niki Y, Nagai K, Harato K, Suda Y, Nakamura M, Matsumoto M (2017) Effects of femoral bone tunnel characteristics on graft-bending angle in double-bundle anterior cruciate ligament reconstruction: a comparison of the outside-in and transportal techniques. Knee Surg Sports Traumatol Arthrosc 25:1191–1198

    Article  PubMed  Google Scholar 

  20. Paessler HH, Mastrokalos DS (2003) Anterior cruciate ligament reconstruction using semitendinosus and gracilis tendons, bone patellar tendon, or quadriceps tendon-graft with press-fit fixation without hardware. A new and innovative procedure. Orthop Clin North Am 34:49–64

    Article  PubMed  Google Scholar 

  21. Riboh JC, Hasselblad V, Godin JA, Mather RC 3rd (2013) Transtibial versus independent drilling techniques for anterior cruciate ligament reconstruction: a systematic review, meta-analysis, and meta-regression. Am J Sports Med 41:2693–2702

    Article  PubMed  Google Scholar 

  22. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790–1800

    Article  PubMed  Google Scholar 

  23. Rodeo SA, Kawamura S, Ma CB, Deng XH, Sussman PS, Hays P, Ying L (2007) The effect of osteoclast activity on tendon-to-bone healing: an experimental study in rabbits. J Bone Joint Surg [Am] 89A:2250–2259

    Google Scholar 

  24. Tachibana Y, Mae T, Shino K, Kanamoto T, Sugamoto K, Yoshikawa H, Nakata K (2015) Morphological changes in femoral tunnels after anatomic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:3591–3600

    Article  PubMed  Google Scholar 

  25. Taguchi T, Kishida A, Akashi M (1998) Hydroxyapatite formation on/in hydrogels using a novel alternate soaking process. Chem Lett 8:711–712

    Article  Google Scholar 

  26. Taketomi S, Inui H, Sanada T, Yamagami R, Tanaka S, Nakagawa T (2014) Eccentric femoral tunnel widening in anatomic anterior cruciate ligament reconstruction. Arthroscopy 30:701–709

    Article  PubMed  Google Scholar 

  27. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    Google Scholar 

  28. Thomas NP, Kankate R, Wandless F, Pandit H (2005) Revision anterior cruciate ligament reconstruction using a 2-stage technique with bone grafting of the tibial tunnel. Am J Sports Med 33:1701–1709

    Article  PubMed  Google Scholar 

  29. Webster KE, Feller JA, Hameister KA (2001) Bone tunnel enlargement following anterior cruciate ligament reconstruction: a randomised comparison of hamstring and patellar tendon grafts with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 9:86–91

    Article  CAS  PubMed  Google Scholar 

  30. Xu Y, Ao Y, Wang J, Yu J, Cui G (2011) Relation of tunnel enlargement and tunnel placement after single-bundle anterior cruciate ligament reconstruction. Arthroscopy 27:923–932

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Mutsuzaki.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

This work was supported by the Japan Sports Medicine Foundation, 2015.

Ethical approval

The Ethics Committee of Ichihara Hospital reviewed and approved the study (ID number of the approval: 1101).

Informed consent

Informed consent was obtained from the patients enrolled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutsuzaki, H., Kinugasa, T., Ikeda, K. et al. Calcium phosphate-hybridized tendon grafts reduce femoral bone tunnel enlargement in anatomic single-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26, 500–507 (2018). https://doi.org/10.1007/s00167-017-4657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4657-9

Keywords

Navigation