Skip to main content
Log in

Properties of NiCrAlY coatings fabricated on superalloy GH4169 by electrospark deposition

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

NiCrAlY coatings were deposited on superalloy GH4169 by electrospark deposition technique. Influences of the depositing parameters (100 V/40 μF, 100 V/80 μF, 100 V/120 μF, 150 V/40 μF, 150 V/80 μF, 150 V/120 μF) on the microstructure and the properties of the coatings were experimentally investigated. Results show that the depositing parameters affect defect density and consequent properties of coatings. The deposition voltage has greater influences on the deposition velocity and on the properties of the coatings than the deposition capacity. The weight gain per area of the coatings deposited under 150 V increases faster than that under 100 V. The coating deposited under 100 V/40 μF has the minimum defect density and the best properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudryashov AE, Potanin AY, Lebedev DN, Sukhorukova IV, Shtansky DV, Levashov EA (2016) Structure and properties of Cr-Al-Si-B coatings produced by pulsed electrospark deposition on a nickel alloy. Surf Coat Technol 285:278–288. https://doi.org/10.1016/j.surfcoat.2015.11.052

    Article  Google Scholar 

  2. Podchernyaeva IA, Panasyuk AD, Teplenko MA, Podol’skii VI (2000) Protective coatings on heat-resistant nickel alloys (review). Powder Metall Met Ceram 39:434–444. https://doi.org/10.1023/A:1011358221085

  3. Pimentel JV, Danek M, Polcar T, Cavaleiro A (2014) Effect of rough surface patterning on the tribology of W-S-C-Cr self-lubricant coatings. Tribol Int 69:77–83. https://doi.org/10.1016/j.triboint.2013.09.004

    Article  Google Scholar 

  4. Xin B, Yu Y, Zhou J, Wang L, Ren S (2017) Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures. Surf Coat Technol 313:328–336. https://doi.org/10.1016/j.surfcoat.2017.01.098

    Article  Google Scholar 

  5. Monceaua D, Oquaba D, Estournesb C, Boidota M, Selezneffa S, Thebaulta Y (2009) Pt-modified Ni aluminides, MCrAlY-base multilayer coatings and TBC systems fabricated by Spark Plasma Sintering for the protection of Ni-base superalloys. Surf Coat Technol 204(6):771–778. https://doi.org/10.1016/j.surfcoat.2009.09.054

    Article  Google Scholar 

  6. Wang J, Chen M, Cheng Y, Yang L, Bao Z, Liu L, Zhu S, Wang F (2017) Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy. Corros Sci 123:27–39. https://doi.org/10.1016/j.corsci.2017.04.004

    Article  Google Scholar 

  7. Shen M, Zhao P, Gu Y, Zhu S, Wang F (2015) High vacuum arc ion plating NiCrAlY coatings: microstructure and oxidation behavior. Corros Sci 94:294–304. https://doi.org/10.1016/j.corsci.2015.02.032

    Article  Google Scholar 

  8. Agarwal A, Dahotre NB, Sudarshan TS (2013) Evolution of interface in pulsed electrode deposited titanium diboride on copper and steel. Surf Eng 15:27–32. https://doi.org/10.1179/026708499322911601

    Article  Google Scholar 

  9. Agarwal A, Dahotre NB (1999) Synthesis of boride coating on steel using high energy density rrocesses: comparative study of evolution of microstructure. Mater Charact 42(1):31–34. https://doi.org/10.1016/S1044-5803(98)00054-0

    Article  Google Scholar 

  10. Li Z, Gao W, Kwok P, Li S, He Y (2010) Electro-spark deposition coatings for high temperature oxidation resistance. High Temp Mater Process 19(6):443–458. https://doi.org/10.1515/HTMP.2000.19.6.443

    Google Scholar 

  11. Zamulaeva EI, Levashov EA, Sviridova TA, Shvyndina NV, Petrzhik MI (2013) Influence of topography on plasma treated titanium surface wettability. Surf Coat Technol 235(22):447–453. https://doi.org/10.1016/j.surfcoat.2013.08.001

    Google Scholar 

  12. Cadney S, Brochu M (2008) Formation of amorphous Zr41. 2Ti13. 8Ni10 Cu12. 5Be22. 5 coatings via the ElectroSpark Deposition processIntermetallics. Intermetallics 16(4):518–523. https://doi.org/10.1016/j.internet

  13. Frangini S, Masci A (2010) A study on the effect of a dynamic contact force control for improving electrospark coating properties. Surf Coat Technol 204(16–17):2613–2623. https://doi.org/10.1016/j.surfcoat.2010.02.006

    Article  Google Scholar 

  14. Ribalco AV, Sahin O, Korkmaz K (2009) A modified electrospark alloying method for low surface roughness. Surf Coat Technol 203(23):3509–3515. https://doi.org/10.1016/j.surfcoat2009.05.002

  15. Luo C, Dong SJ, Xiang X (2008) Microstructure and properties of TiC coating by vibrating electrospark deposition. Key Eng Mater 180:373–374. https://doi.org/10.4028/www.scientific.net/KEM.373-374.180

    Google Scholar 

  16. Xie Y-j, Wang M-c (2006) Epitaxial MCrAlY coating on a Ni-base superalloy produced by electrospark deposition. Surf Coat Technol 201:3564–3570. https://doi.org/10.1016/j.surfcoat.2006.08.107

    Article  Google Scholar 

  17. Wang M-c, Wang W-f, Xie Y-j, Zhang J (2010) Electro-spark epitaxial deposition of NiCoCrAlYTa alloy on directionally solidified nickel-based superalloy. Trans Nonferrous Metals Soc China 20:795–802. https://doi.org/10.1016/S1003-6326(09)60216-8

    Article  Google Scholar 

  18. Heard DW, Brochu M (2010) Development of a nanostructure microstructure in the Al-Ni system using the electrospark deposition process. J Mater Process Technol 210:892–898. https://doi.org/10.1016/j.jmatprotec.2010.02.001

    Article  Google Scholar 

  19. Hintermann HE (1993) Characterization of surface coatings by the scratch adhesion test and by indentation measurements. Fresenius J Anal Chem 346:45–52. https://doi.org/10.1007/BF00321380

    Article  Google Scholar 

  20. Johnson RN, Sheldon GL (1986) Advances in the electrospark deposition coating process. J Vac Sci Technol A 4(6):2740–2746. https://doi.org/10.1116/1.573672

    Article  Google Scholar 

  21. Chen Z, Zhou Y (2006) Surface modification of resistance welding electrode by electro-spark deposited composite coatings: part I. Coating characterization. Surf Coat Technol 201(3-4):1503–1510. https://doi.org/10.1016/j.surfcoat.2006.02.015

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by “863” project (No. 2015AA034303). The authors also thank Lin Yang (School of Aerospace, Mechanical and Mechatronic Engineering School of Naval Architecture and Ocean Engineering, the University of Sydney, NSW 2006, Australia) for English polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangze Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Wang, Y. & Tang, G. Properties of NiCrAlY coatings fabricated on superalloy GH4169 by electrospark deposition. Int J Adv Manuf Technol 96, 1787–1793 (2018). https://doi.org/10.1007/s00170-017-1162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1162-8

Keywords

Navigation