Skip to main content
Log in

A fast way to determine temperature sensor locations in thermal error compensation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the improvement of machining accuracy, problems associated with the thermal deformation of the machine tool structure and the thermal error compensation technique have received more and more attention. However, the complexity of the predictive thermal model limits the application of the thermal error compensation technique. Appropriate temperature sensor locations could contribute to a better thermal model and greatly reduce the amount of time spent. This paper introduces a fast way to determine temperature sensor locations for thermal error compensation. A theoretical analysis of the heat transfer, heat exchange, and thermal deformation of a 1-D structure, i.e., a spindle, is discussed. A simulation of the heat transfers and exchange process for the spindle is performed, considering different heat flux coefficients and heat transfer coefficients. The results from the theoretical analysis and the simulation indicate that there is an optimal sensor location point on the 1-D structure and that the heat flux and transfer coefficients have little influence on the position of the optimal sensor location on the 1-D structure. The experimental results prove that optimal temperature sensor locations do exist, regarding which the temperature change and the spindle thermal deformation also have a nearly linear relationship without a time delay. Thus, a linear model can be obtained via interpolation of the experimental data. Finally, the optimal temperature sensor location method is successfully applied for the thermal error compensation of a high-speed spindle of a horizontal machining center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson RB (1996). The war against thermal expansion. Manuf Eng 116(6):45

    Google Scholar 

  2. Hsieh K-H, Chen T-R, Chang P, Tang C-H (2013) Thermal growth measurement and compensation for integrated spindles. Int J Adv Manuf Technol 64(5–8):889–901

    Article  Google Scholar 

  3. Cao H, Zhang X, Chen X (2016) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52

    Article  Google Scholar 

  4. Sun L, Ren M, Hong H, Yin Y (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5–8):1267–1277

    Article  Google Scholar 

  5. Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2015) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Appl Math Model 39(7):1837–1852

    Article  Google Scholar 

  6. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools — a review: Part II: thermal errors. Int J Mach Tools Manuf 40 (9):1257–1284

    Article  Google Scholar 

  7. Cengel Y (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education

  8. Jiang S, Zhao Z, Sun M, Guo J, Yu H (2013) Analysis on thermal dynamic characteristics of CNC machine tool spindle. J Tianjin Univ 46(9):846–850

    Google Scholar 

  9. Xiang S, Zhu X, Yang J (2014) Modeling for spindle thermal error in machine tools based on mechanism analysis and thermal basic characteristics tests. Proc Inst Mech Eng C J Mech Eng Sci 228(18):3381–3394

    Article  Google Scholar 

  10. Bossmanns B, Tu JF (2001) A power flow model for high speed motorized spindles—heat generation characterization. J Manuf Sci Eng 123(3):494–505

    Article  Google Scholar 

  11. Mayr J, Ess M, Weikert S., Wegener, K (2009). Compensation of thermal effects on machine tools using a FDEM simulation approach. Proceedings Lamdamap, 9

  12. Li Y, Zhao W (2012, August). Axial thermal error compensation method for the spindle of a precision horizontal machining center. In Mechatronics and Automation (ICMA), 2012 International Conference on (pp. 2319–2323). IEEE.

  13. Han J, Wang L, Wang H, Cheng N (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1–4):205–212

    Article  Google Scholar 

  14. Guo Q, Yang J (2011) Application of projection pursuit regression to thermal error modeling of a CNC machine tool. Int J Adv Manuf Technol 55(5–8):623–629

    Google Scholar 

  15. Huang Y, Zhang J, Li X, Tian L (2014) Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int J Adv Manuf Technol 71(9–12):1669–1675

    Article  Google Scholar 

  16. Yang H, Ni J (2005) Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. Int J Mach Tools Manuf 45(4):455–465

    Article  Google Scholar 

  17. Yang Z, Sun M, Li W, Liang W (2011) Modified Elman network for thermal deformation compensation modeling in machine tools. Int J Adv Manuf Technol 54(5–8):669–676

    Article  Google Scholar 

  18. Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27(7):158–168

    Article  Google Scholar 

  19. Zhang Y, Jiang H (2012) Machine tool thermal error modeling and prediction by grey neural network. Int J Adv Manuf Technol 59(9–12):1065–1072

    Article  Google Scholar 

  20. Du ZC, Yao SY, Yang JG (2015) Thermal behavior analysis and thermal error compensation for motorized spindle of machine tools. Int J Precision Eng Manuf 16(7):1571–1581

    Article  Google Scholar 

  21. Liu K, Liu Y, Sun M, Li X, Wu Y (2016) Spindle axial thermal growth modeling and compensation on CNC turning machines. Int J Adv Manuf Technol 87(5–8):1–8

    Google Scholar 

  22. Liu K, Liu Y, Sun MJ, Wu YL, Zhu TJ (2017) Comprehensive thermal growth compensation method of spindle and servo axis error on a vertical drilling center. Int J Adv Manuf Technol 88(9–12):2507–2516

    Article  Google Scholar 

  23. Yan JY, Yang JG (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132

    Article  Google Scholar 

  24. Miao E, Liu Y, Liu H, Gao Z, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tools Manuf 97:50–59

    Article  Google Scholar 

  25. Cheng Q, Qi Z, Zhang G, Zhao Y, Sun B, Gu P (2016) Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks. Int J Adv Manuf Technol 83(5–8):753–764

    Article  Google Scholar 

  26. Han J, Wang L, Cheng N, Wang H (2012) Thermal error modeling of machine tool based on fuzzy c -means cluster analysis and minimal-resource allocating networks. Int J Adv Manuf Technol 60(5–8):463–472

    Article  Google Scholar 

  27. Tan F, Yin M, Wang L, Yin G (2018). Spindle thermal error robust modeling using LASSO and LS-SVM. Int J Adv Manuf Technol 94(5–8):2861–2874

    Article  Google Scholar 

Download references

Funding

This study received funding from the National Science and Technology Major Project under grant no. 2015ZX04005001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengchun Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Yao, X., Hou, H. et al. A fast way to determine temperature sensor locations in thermal error compensation. Int J Adv Manuf Technol 97, 455–465 (2018). https://doi.org/10.1007/s00170-018-1898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1898-9

Keywords

Navigation