Skip to main content
Log in

Logistic regression diagnostics in ridge regression

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The adverse effects of multicollinearity and unusual observations are seen in logistic regression and attention had been given in the literature to each of these problems separately. However, multicollinearity and unusual observations can arise simultaneously in logistic regression. The objective of this paper is to propose the statistics for detecting the unusual observations in an ill-conditioned data set under the ridge logistic estimator. A numerical example and two Monte Carlo simulation studies are used to illustrate the methodology. The present investigation shows that ridge logistic estimation copes with unusual observations by downweighting their influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the iterative scheme given by Eq. (2), \(\varvec{\hat{\beta }}^{(0)}\) is used as an initial value; however, to start the iteration \(\varvec{ \hat{\beta }}^{(0)}\) should be known. Therefore, a real parameter value, say \( \varvec{\beta }_{0}\), is usually used. Hence, \(\varvec{\hat{\beta }} ^{(0)}\) and \(\varvec{\beta }_{0}\) can be used interchangeably.

  2. The main difference between the ridge estimators of Schaefer et al. (1984) and LeCessie and VanHouwelingen (1992) is that the ML estimator at convergence is used in computing matrix V of the estimator of Schaefer et al. (1984) whereas real parameter value \(\varvec{\beta }_{0}\) is used in computing matrix V of the estimator of LeCessie and VanHouwelingen (1992).

  3. The ridge logistic estimates in Fig. 3 correspond to first-order estimates. The first-order ML estimate of \(\varvec{\beta }\) is computed as \( [-2.2852,0.0165,0.7830,-0.0063,0.9336,2.7695]\) which is seen from Fig. 3 for \(k=0\). Therefore, the estimated values on Fig. 3 for \(k=0\) are different from the fully iterated ML estimates in Table 13.

References

  • Atkinson AC (1985) Plots, transformations and regression. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Cook RD (1977) Detection of influential observation in linear regression. Technometrics 19(1):15–18

    MathSciNet  MATH  Google Scholar 

  • Cook D, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, New York

    MATH  Google Scholar 

  • Duffy DE, Santner TJ (1989) On the small sample properties of norm restricted maximum likelihood estimators for logistic regression models. Commun Stat Theory Methods 18(3):959–980

    Article  MathSciNet  MATH  Google Scholar 

  • Hoerl AE, Kennard RW, Baldwin KF (1975) Ridge regression: some simulations. Commun Stat Theory Methods 4(2):105–123

    Article  MATH  Google Scholar 

  • Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Jahufer A, Jianbao C (2009) Assessing global influential observations in modified ridge regression. Stat Probab Lett 79(4):513–518

    Article  MathSciNet  MATH  Google Scholar 

  • Jennings DE (1986) Outliers and residual distributions in logistic regression. J Am Stat Assoc 81(396):987–990

    Article  MathSciNet  MATH  Google Scholar 

  • Lee AH, Silvapulle MJ (1988) Ridge estimation in logistic regression. Commun Stat Simul 17(4):1231–1257

    Article  MathSciNet  MATH  Google Scholar 

  • LeCessie S, VanHouwelingen JC (1992) Ridge estimators in logistic regression. Appl Stat 41(1):191–201

    Article  Google Scholar 

  • Lesaffre E, Albert A (1989) Multiple group logistic regression diagnostics. J R Stat Soc Ser C Appl Stat 38:425–440

    MathSciNet  MATH  Google Scholar 

  • Lesaffre E, Marx BD (1993) Collinearity in generalized linear regression. Commun Stat Theory Methods 22(7):1933–1952

    Article  MathSciNet  MATH  Google Scholar 

  • McDonald GC, Galarneau DI (1975) A Monte Carlo evaluation of some ridge-type estimators. J Am Stat Assoc 70(350):407–416

    Article  MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Özkale MR (2013) Influence measures in affine combination type regression. J Appl Stat 40(10):2219–2243

    Article  MathSciNet  Google Scholar 

  • Pregibon D (1981) Logistic regression diagnostics. Ann Stat 9(4):705–724

    Article  MathSciNet  MATH  Google Scholar 

  • Preisser JS, Garcia DI (2005) Alternative computational formulae for generalized linear model diagnostics: identifing influential observations with SAS software. Comput Stat Data Anal 48:755–764

    Article  MATH  Google Scholar 

  • Schaefer RL, Roi LD, Wolfe RA (1984) A ridge logistic estimator. Commun Stat Theory Methods 13(1):99–113

    Article  Google Scholar 

  • Schott JR (2005) Matrix analysis for statistics. Wiley, Hoboken

    MATH  Google Scholar 

  • Smith EP, Marx BD (1990) Ill-conditioned information matrices, generalized linear models and estimation of the effects of acid rain. Environmetrics 1(1):57–71

    Article  Google Scholar 

  • Wahba G, Golub GH, Heath M (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223

    Article  MathSciNet  MATH  Google Scholar 

  • Walker E, Birch JB (1988) Influence measures in ridge regression. Technometrics 30(2):221–227

    Article  Google Scholar 

  • Weissfeld LA, Sereika SM (1991) A multicollinearity diagnostics for generalized linear models. Commun Stat Theory Methods 20(4):1183–1198

    Article  MathSciNet  Google Scholar 

  • Williams DA (1987) Generalized linear model diagnostics using the deviance and single case deletions. J R Stat Soc Ser C Appl Stat 36(2):181–191

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) to M. Revan Özkale, a visiting scholar for 5 months by TÜBİTAK to The Ohio State University, College of Public Health, Division of Biostatistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Revan Özkale.

Appendices

Appendix A

Theorem 1

The \(\varvec{\hat{\beta }}^{(1)}(k)\) when the \(i\hbox {th}\) observation is deleted is \(\varvec{\hat{\beta }}_{(i)}^{(1)}(k)= \varvec{\hat{\beta }}^{(1)}(k)-\frac{(X^{\prime }V^{(0)}X+kI)^{-1}x_{i}}{ 1-h_{ii}(k)}v_{ii}^{(0)}[z_{i}^{(0)}-x_{i}^{\prime }\varvec{\hat{\beta }} ^{(1)}(k)]\) where \(\sqrt{v_{ii}^{(0)}}[z_{i}^{(0)}-x_{i}^{\prime } \varvec{\hat{\beta }}^{(1)}(k)]\) is the \(i\hbox {th}\) ridge logistic regression residual and \(h_{ii}(k)\) is the \(i\hbox {th}\) ridge logistic regression leverage value.

Proof

Let \(Q=(V^{(0)})^{1/2}X\), \(\mathbf {w}=(V^{(0)})^{1/2}\mathbf {z}^{(0)}\) and \(\mathbf {s}=\mathbf {y}-\hat{\mathbf {\pi }}^{(0)}\). Then \(\varvec{\hat{ \beta }}^{(1)}(k)\) and \(\varvec{\hat{\beta }}^{(1)}\) given by (4) and (5) can be reexpressed as

$$\begin{aligned} \varvec{\hat{\beta }}^{(1)}(k)= \left( Q^{\prime }Q+kI\right) ^{-1}Q^{\prime }Q \varvec{\hat{\beta }}^{(1)} \end{aligned}$$

and

$$\begin{aligned} \varvec{\hat{\beta }}^{(1)}= & {} \left( Q^{\prime }Q\right) ^{-1}Q^{\prime }\mathbf {w} \\= & {} \varvec{\hat{\beta }}^{(0)}+ \left( Q^{\prime }Q\right) ^{-1}X^{\prime }\mathbf {s.} \end{aligned}$$

Let \(\varvec{\hat{\beta }}_{(i)}^{(1)}(k)\) and \(\varvec{\hat{\beta }} _{(i)}^{(1)}\) denote the ML and ridge logistic estimators of \(\varvec{ \beta }\) based on the observations without the \(i\hbox {th}\) observation, respectively. Then, we have

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)}(k)= \left( Q_{(i)}^{\prime }Q_{(i)}+kI\right) ^{-1}Q_{(i)}^{\prime }Q_{(i)}\varvec{\hat{\beta }}_{(i)}^{(1)} \end{aligned}$$
(10)

and

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)}=\varvec{\hat{\beta }} ^{(0)}+\left( Q_{(i)}^{\prime }Q_{(i)}\right) ^{-1}X_{(i)}^{\prime }\mathbf {s}_{(i)}. \end{aligned}$$

By applying the Sherman–Morrison–Woodbury theorem (see Schott 2005) to \( (Q_{(i)}^{\prime }Q_{(i)})^{-1}\) and after algebraic simplifications, \( \varvec{\hat{\beta }}_{(i)}^{(1)}\) can be written as

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)}= & {} \varvec{\hat{\beta }} ^{(0)}+\left( Q_{(i)}^{\prime }Q_{(i)}\right) ^{-1}X_{(i)}^{\prime }\mathbf {s}_{(i)}= \varvec{\beta }^{(0)}+\left( Q^{\prime }Q-q_{i}q_{i}^{\prime }\right) ^{-1}\left( X^{\prime }\mathbf {s}-x_{i}s_{i}\right) \\= & {} \varvec{\hat{\beta }}^{(0)}+\left[ (Q^{\prime }Q)^{-1}+\frac{(Q^{\prime }Q)^{-1}q_{i}q_{i}^{\prime }\left( Q^{\prime }Q\right) ^{-1}}{1-h_{i}}\right] (X^{\prime } \mathbf {s}-x_{i}s_{i}) \\= & {} \varvec{\hat{\beta }}^{(0)}+(Q^{\prime }Q)^{-1}X^{\prime }\mathbf {s}- \frac{(Q^{\prime }Q)^{-1}q_{i}}{1-h_{ii}}\left( \frac{s_{i}}{\sqrt{v_{ii}}} -q_{i}^{\prime }(Q^{\prime }Q)^{-1}X^{\prime }\mathbf {s}\right) \end{aligned}$$

where \(q_{i}^{\prime }=\sqrt{v_{ii}^{(0)}}x_{i}^{\prime }\) is the ith row vector of the Q matrix and \(h_{ii}=q_{i}^{\prime }(Q^{\prime }Q)^{-1}q_{i}=v_{ii}^{(0)}x_{i}^{\prime }(X^{\prime }V^{(0)}X)^{-1}x_{i}\) is the \(i\hbox {th}\) diagonal element of

$$\begin{aligned} H=(V^{(0)})^{1/2}X(X^{\prime }V^{(0)}X)^{-1}X^{\prime }(V^{(0)})^{1/2}. \end{aligned}$$

Noting that \((Q^{\prime }Q)^{-1}X^{\prime }\mathbf {s}=\varvec{\hat{\beta } }^{(1)}-\varvec{\hat{\beta }}^{(0)}\), \(\varvec{\hat{\beta }} _{(i)}^{(1)}\) can be written as

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)} =\varvec{\hat{\beta }}^{(1)}-\frac{ \left( X^{\prime }V^{(0)}X\right) ^{-1}x_{i}}{1-h_{ii}}v_{ii}^{(0)}\left( \frac{s_{i}}{ v_{ii}^{(0)}}+x_{i}^{\prime }\varvec{\hat{\beta }}^{(0)}\mathbf {-} x_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}\right) \end{aligned}$$
(11)

where \(\frac{s_{i}}{v_{ii}^{(0)}}+x_{i}^{\prime }\varvec{\hat{\beta }} ^{(0)}\) is the \(i\hbox {th}\) element of working response \(\mathbf {z}^{(0)}\). Then \( \sqrt{v_{ii}^{(0)}}(\frac{s_{i}}{v_{ii}^{(0)}}+x_{i}^{\prime }\varvec{ \hat{\beta }}^{(0)}\mathbf {-}x_{i}^{\prime }\varvec{\hat{\beta }}^{(1)})\) presents the \(i\hbox {th}\) standardized residual (Pearson residual) after one step iteration. \(\square \)

Using the expression

$$\begin{aligned} \left( Q_{(i)}^{\prime }Q_{(i)}+kI\right) ^{-1}= & {} \left[ (Q^{\prime }Q+kI)-q_{i}q_{i}^{\prime }\right] ^{-1} \\= & {} \left( Q^{\prime }Q+kI\right) ^{-1}+\frac{\left( Q^{\prime }Q+kI\right) ^{-1}q_{i}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}}{1-h_{ii}(k)} \end{aligned}$$

where \(h_{ii}(k)=q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}q_{i}=v_{ii}^{(0)}x_{i}^{\prime }(X^{\prime }V^{(0)}X+kI)^{-1}x_{i}\) is the \(i\hbox {th}\) diagonal element of the matrix \( H(k)=(V^{(0)})^{1/2}X(X^{\prime }V^{(0)}X+kI)^{-1}X^{\prime }(V^{(0)})^{1/2}\), we obtain

$$\begin{aligned} \left( Q_{(i)}^{\prime }Q_{(i)}+kI\right) ^{-1}Q_{(i)}^{\prime }Q_{(i)}= & {} \left[ \left( Q^{\prime }Q+kI\right) -q_{i}q_{i}^{\prime }\right] ^{-1} \left( Q^{\prime }Q-q_{i}q_{i}^{\prime }\right) \nonumber \\= & {} \left( Q^{\prime }Q+kI\right) ^{-1}Q^{\prime }Q \nonumber \\&+\frac{(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q}{1-h_{ii}(k)} \nonumber \\&-(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }-\frac{h_{ii}(k)(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }}{1-h_{ii}(k)} \nonumber \\= & {} (Q^{\prime }Q+kI)^{-1}Q^{\prime }Q \nonumber \\&+\frac{(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q}{1-h_{ii}(k)} \nonumber \\&-\frac{(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }}{1-h_{ii}(k)}. \end{aligned}$$
(12)

Substituting results (11) and (12) into (10) and after algebraic simplifications, we obtain

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)}(k)= & {} (Q^{\prime }Q+kI)^{-1}Q^{\prime }Q \varvec{\hat{\beta }}^{(1)}+\frac{(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q\varvec{ \hat{\beta }}^{(1)}}{1-h_{ii}(k)} \\&-\frac{(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }\varvec{\hat{\beta }} ^{(1)}}{1-h_{ii}(k)}-\left[ \frac{1}{1-h_{ii}}+\frac{h_{ii}(k)}{1-h_{ii}(k)}-\frac{ h_{ii}}{1-h_{ii}}\right] \\&\times (Q^{\prime }Q+kI)^{-1}q_{i}\left( \frac{s_{i}}{\sqrt{v_{ii}^{(0)}}} +q_{i}^{\prime }\varvec{\hat{\beta }}^{(0)}-q_{i}^{\prime }\varvec{ \hat{\beta }}^{(1)}\right) \\= & {} (Q^{\prime }Q+kI)^{-1}Q^{\prime }Q\varvec{\hat{\beta }}^{(1)}+\frac{ (Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q \varvec{\hat{\beta }}^{(1)}}{1-h_{ii}(k)} \\&+\frac{(Q^{\prime }Q+kI)^{-1}q_{i}}{1-h_{ii}(k)}\left( \frac{s_{i}}{\sqrt{ v_{ii}^{(0)}}}+q_{i}^{\prime }\varvec{\hat{\beta }}^{(0)}-q_{i}^{\prime } \varvec{\hat{\beta }}^{(1)}+q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}\right) \\= & {} (Q^{\prime }Q+kI)^{-1}Q^{\prime }Q\varvec{\hat{\beta }}^{(1)}+\frac{ (Q^{\prime }Q+kI)^{-1}q_{i}}{1-h_{ii}(k)} \\&\times \left( \frac{s_{i}}{\sqrt{v_{ii}^{(0)}}}+q_{i}^{\prime }\varvec{\hat{ \beta }}^{(0)}-q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q\varvec{ \hat{\beta }}^{(1)}\right) \\= & {} \varvec{\hat{\beta }}^{(1)}(k)-\frac{(Q^{\prime }Q+kI)^{-1}q_{i}}{ 1-h_{ii}(k)}\left[ \frac{s_{i}}{\sqrt{v_{ii}^{(0)}}}+q_{i}^{\prime }\varvec{ \hat{\beta }}^{(0)}-q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)\right] . \end{aligned}$$

Since \(\frac{s_{i}}{v_{ii}^{(0)}}+x_{i}^{\prime }\varvec{\hat{\beta }} ^{(0)}\) is the \(i\hbox {th}\) element of working response \(\mathbf {z}^{(0)}\), the proof is completed when Q and \(q_{i}\) are written as defined earlier.

Appendix B

Theorem 2

The change in Pearson chi-square statistic for the ridge logistic estimator is

$$\begin{aligned} \Delta \chi _{i}^{2}(k)= & {} \frac{1}{(1-h_{ii}(k))^{2}}\left[ \sqrt{v_{ii}^{(0)}} (z_{i}^{(0)}-x_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k))\right] ^{2}-\frac{2k }{1-h_{ii}(k)}\varvec{\hat{\beta }}^{(1)\prime }(k) \\&\times \left( X^{\prime }V^{(0)}X+kI\right) ^{-1}x_{i} v_{ii}^{(0)}\left( z_{i}^{(0)}-x_{i}^{\prime }\varvec{ \hat{\beta }}^{(1)}(k)\right) -\frac{1}{(1-h_{ii}(k))^{2}}x_{i}^{\prime } \\&\times \left( X^{\prime }V^{(0)}X+kI\right) ^{-1}X^{\prime }V^{(0)} X(X^{\prime }V^{(0)}X+kI)^{-1}x_{i}v_{ii}^{(0)} \\&\times \left[ \sqrt{v_{ii}^{(0)}}(z_{i}^{(0)}-x_{i}^{\prime }\varvec{ \hat{\beta }}^{(1)}(k))\right] ^{2}. \end{aligned}$$

Proof

Let \(\chi ^{2}(k)\) and \(\chi _{(i)}^{2}(k)\) denote the Pearson chi-square statistic based on the full data set and the Pearson chi-square statistic when observation i is deleted for the ridge logistic estimator. Then, by using the linear regression-like approximation of Pregibon (1981), we get the following expressions which are similar to residual sum of squares in linear regression:

$$\begin{aligned} \chi ^{2}(k)=\left( \mathbf {w}-Q\varvec{\hat{\beta }}^{(1)}(k)\right) ^{\prime }\left( \mathbf {w}-Q\varvec{\hat{\beta }}^{(1)}(k)\right) , \end{aligned}$$

and

$$\begin{aligned} \chi _{(i)}^{2}(k)= & {} \left( \mathbf {w}_{(i)}-Q_{(i)}\varvec{\hat{\beta }} _{(i)}^{(1)}(k)\right) ^{\prime }\left( \mathbf {w}_{(i)}-Q_{(i)}\varvec{\hat{\beta }} _{(i)}^{(1)}(k)\right) \\= & {} \mathbf {w}_{(i)}^{\prime }\mathbf {w}_{(i)}-2\varvec{\hat{\beta }} _{(i)}^{(1)\prime }(k)Q_{(i)}^{\prime }\mathbf {w}_{(i)}+\varvec{\hat{ \beta }}_{(i)}^{(1)\prime }(k)Q_{(i)}^{\prime }Q_{(i)}\varvec{\hat{\beta }} _{(i)}^{(1)}(k). \end{aligned}$$

The expression \(\varvec{\hat{\beta }}_{(i)}^{(1)}(k)\) given by Theorem 1 can also be written as

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)}(k)=\varvec{\hat{\beta }}^{(1)}(k)- \frac{(Q^{\prime }Q+kI)^{-1}q_{i}}{1-h_{ii}(k)}\left[ w_{i}-q_{i}^{\prime } \varvec{\hat{\beta }}^{(1)}(k)\right] . \end{aligned}$$

By using this expression, we get

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)\prime }(k)Q_{(i)}^{\prime }w_{(i)}= & {} \varvec{\hat{\beta }}^{(1)\prime }(k)Q^{\prime }\mathbf {w}-\varvec{ \hat{\beta }}^{(1)\prime }(k)q_{i}w_{i}-\frac{1}{1-h_{ii}(k)} (w_{i}-q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)) \nonumber \\&\times q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)+\frac{h_{ii}(k)}{ 1-h_{ii}(k)}(w_{i}-q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k))w_{i} \end{aligned}$$
(13)

and

$$\begin{aligned} \varvec{\hat{\beta }}_{(i)}^{(1)\prime }(k)Q_{(i)}^{\prime }Q_{(i)} \varvec{\hat{\beta }}_{(i)}^{(1)}(k)= & {} \varvec{\hat{\beta }} ^{(1)\prime }(k)Q^{\prime }Q\varvec{\hat{\beta }}^{(1)}(k)+\frac{ 1-2h_{ii}(k)}{(1-h_{ii}(k))^{2}}\varvec{\hat{\beta }}^{(1)\prime }(k)q_{i}q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k) \nonumber \\&-\frac{1-2h_{ii}(k)}{(1-h_{ii}(k))^{2}}\varvec{\hat{\beta }}^{(1)\prime }(k)q_{i}w_{i}-\frac{1-2h_{ii}(k)}{(1-h_{ii}(k))^{2}}w_{i}q_{i}^{\prime } \varvec{\hat{\beta }}^{(1)}(k) \nonumber \\&-\frac{h_{ii}(k)^{2}}{(1-h_{ii}(k))^{2}}w_{i}^{2}+\frac{2k}{1-h_{ii}(k)} \varvec{\hat{\beta }}^{(1)\prime }(k)(Q^{\prime }Q+kI)^{-1} \nonumber \\&\times q_{i}w_{i}-\frac{2k}{1-h_{ii}(k)}\varvec{\hat{\beta }} ^{(1)\prime }(k)(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }\varvec{\hat{ \beta }}^{(1)}(k)\nonumber \\&+\frac{1}{(1-h_{ii}(k))^{2}}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q(Q^{\prime }Q+kI)^{-1}q_{i}\nonumber \\&\times \left( w_{i}-q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)\right) ^{2} \end{aligned}$$
(14)

Hence, we obtain \(\chi _{(i)}^{2}(k)\) from Eqs. (13) and (14) as \(\square \)

$$\begin{aligned} \chi _{(i)}^{2}(k)= & {} \mathbf {w}_{(i)}^{\prime }\mathbf {w}_{(i)}-2 \varvec{\hat{\beta }}^{(1)\prime }(k)Q^{\prime }\mathbf {w}+[2-\frac{ 1-2h_{ii}(k)}{(1-h_{ii}(k))^{2}}+\frac{2h_{ii}(k)}{1-h_{ii}(k)}]\varvec{ \hat{\beta }}^{(1)\prime }(k)q_{i}w_{i} \\&+\left[ \frac{2}{1-h_{ii}(k)}-\frac{1-2h_{ii}(k)}{(1-h_{ii}(k))^{2}} \right] w_{i}q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)\\&-\left[ \frac{2}{1-h_{ii}(k)} -\frac{1-2h_{ii}(k)}{(1-h_{ii}(k))^{2}}\right] \\&\times \varvec{\hat{\beta }}^{(1)\prime }(k)q_{i}q_{i}^{\prime } \varvec{\hat{\beta }}^{(1)}(k)- \left[ \frac{2h_{ii}(k)}{1-h_{ii}(k)}+\frac{ h_{ii}(k)^{2}}{(1-h_{ii}(k))^{2}}\right] w_{i}^{2} \\&+\varvec{\hat{\beta }} ^{(1)\prime }(k)Q^{\prime }Q\varvec{\hat{\beta }}^{(1)}(k)+\frac{2k}{1-h_{ii}(k)}\varvec{\hat{\beta }}^{(1)\prime } (k)(Q^{\prime }Q+kI)^{-1}q_{i}w_{i}\\&-\frac{2k}{1-h_{ii}(k)}\varvec{\hat{\beta }} ^{(1)\prime }(k)(Q^{\prime }Q+kI)^{-1} \\&\times q_{i}q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)+\frac{1}{ (1-h_{ii}(k))^{2}}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q(Q^{\prime }Q+kI)^{-1}q_{i} \\&\times \left( w_{i}-q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)\right) ^{2}. \end{aligned}$$

\(\chi _{(i)}^{2}(k)\) reduces to

$$\begin{aligned} \chi _{(i)}^{2}(k)= & {} \mathbf {w}_{(i)}^{\prime }\mathbf {w}_{(i)}-2 \varvec{\hat{\beta }}^{(1)\prime }(k)Q^{\prime }\mathbf {w}+\frac{1}{ (1-h_{ii}(k))^{2}}\varvec{\hat{\beta }}^{(1)\prime }(k)q_{i}w_{i}+\frac{1 }{(1-h_{ii}(k))^{2}} \\&\times w_{i}q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)-\frac{1}{ (1-h_{ii}(k))^{2}}\varvec{\hat{\beta }}^{(1)\prime }(k)q_{i}q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)+\frac{h_{ii}(k)(h_{ii}(k)-2)}{ (1-h_{ii}(k))^{2}}w_{i}^{2} \\&+\varvec{\hat{\beta }}^{(1)\prime }(k)Q^{\prime }Q\varvec{\hat{\beta }}^{(1)}(k)+\frac{2k}{1-h_{ii}(k)}\varvec{\hat{\beta }}^{(1)\prime }(k)(Q^{\prime }Q+kI)^{-1}q_{i}w_{i} \\&-\frac{2k}{1-h_{ii}(k)}\varvec{\hat{\beta }}^{(1)\prime }(k)(Q^{\prime }Q+kI)^{-1}q_{i}q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k) \\&+\frac{1}{(1-h_{ii}(k))^{2}}q_{i}^{\prime }(Q^{\prime }Q+kI)^{-1}Q^{\prime }Q(Q^{\prime }Q+kI)^{-1}q_{i}\left( w_{i}-q_{i}^{\prime }\varvec{\hat{\beta }} ^{(1)}(k)\right) ^{2}. \end{aligned}$$

The difference \(\Delta \chi _{i}^{2}(k)=\chi ^{2}(k)-\chi _{(i)}^{2}(k)\), after algebraic simplifications, equals

$$\begin{aligned} \Delta \chi _{i}^{2}(k)= & {} \frac{1}{(1-h_{ii}(k))^{2}}(w_{i}-q_{i}^{\prime } \varvec{\hat{\beta }}^{(1)}(k))^{2}-\frac{2k}{1-h_{ii}(k)}\varvec{ \hat{\beta }}^{(1)\prime }(k)(Q^{\prime }Q+kI)^{-1}q_{i} \\&\times \left( w_{i}-q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)\right) {-}\frac{1}{ (1-h_{ii}(k))^{2}}q_{i}^{\prime }(Q^{\prime }Q{+}kI)^{-1}Q^{\prime }Q(Q^{\prime }Q{+}kI)^{-1}q_{i} \\&\times \left( w_{i}-q_{i}^{\prime }\varvec{\hat{\beta }}^{(1)}(k)\right) ^{2}. \end{aligned}$$

Using the definition of \(w_{i}\), \(q_{i}\) and Q, the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkale, M.R., Lemeshow, S. & Sturdivant, R. Logistic regression diagnostics in ridge regression. Comput Stat 33, 563–593 (2018). https://doi.org/10.1007/s00180-017-0755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0755-x

Keywords

Navigation