Skip to main content
Log in

The projective core of symmetric games with externalities

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study which coalition structures have stable distributions. We employ the projective core as a stability concept. Although the projective core is often defined only for the grand coalition, we define it for every coalition structure. We apply the core notion to a variety of economic models including the public goods game, the Cournot and Bertrand competition, and the common pool resource game. We use a partition function to formulate these models. We argue that symmetry is a common property of these models in terms of a partition function. We offer some general results that hold for all symmetric partition function form games and discuss their implications in the economic models. We also provide necessary and sufficient conditions for the projective core of the models to be nonempty. In addition, we show that our results hold even in the presence of small perturbations of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We define the core by inequalities, while one may use domination: for any partition \({\mathcal {P}}\in \varPi (N)\) and any allocation \(x\in X(v,{\mathcal {P}})\), we say that \((y,{\mathcal {Q}})\) dominates x if there exists an \(S\subseteq N\) such that (i) \(y_j>x_j\) for any \(j\in S\), (ii) \({\mathcal {Q}}=\{S\}\cup {\mathcal {P}}_{N{\setminus } S}\), and (iii) \(y\in X(v,{\mathcal {Q}})\). The core for \({\mathcal {P}}\) is the set of allocations x in \(X(v,{\mathcal {P}})\) that are not dominated by any such \((y,{\mathcal {Q}})\). Similar to the traditional core for a game without externalities, the inequality core becomes a subset of the dominance core.

  2. We say that a game satisfies strong symmetry if for any \((S,{\mathcal {P}})\) and \((T,{\mathcal {Q}})\),

    $$\begin{aligned} |S|=|T|\text { and }|{\mathcal {P}}|=|{\mathcal {Q}}| \Rightarrow v(S,{\mathcal {P}})=v(T,{\mathcal {Q}}). \end{aligned}$$

    Note that the class of strong symmetry games \({\mathcal {G}}_N^{SS}\) is different from that of symmetry games: \({\mathcal {G}}_N^{SS}\subseteq {\mathcal {G}}_N^{S}\). For the relationship among some symmetry definitions, see Sect. 6.

References

  • Abe T (2018) Stable coalition structures in symmetric majority games: a coincidence between myopia and farsightedness. Theory Decis 85:353–374

    Article  Google Scholar 

  • Abe T, Funaki Y (2017) The non-emptiness of the core of a partition function form game. Int J Game Theory 46:715–736

    Article  Google Scholar 

  • Aumann RJ (1967) A survey of cooperative games without side payments. Essays in mathematical economics. Princeton University Press, Princeton

  • Bloch F, van den Nouweland A (2014) Expectation formation rules and the core of partition function games. Games Econ Behav 88:339–353

    Article  Google Scholar 

  • Chwe MSY (1994) Farsighted coalitional stability. J Econ Theory 63:299–325

  • de Clippel G, Serrano R (2008) Marginal contributions and externalities in the value. Econometrica 76:1413–1436

    Article  Google Scholar 

  • Diamantoudi E, Xue L (2003) Farsighted stability in hedonic games. Soc Choice Welf 21:39–61

    Article  Google Scholar 

  • Greenberg J (1994) Coalition structures. Handbook of game theory with economic applications, Chapter, vol 37. Elsevier, Amsterdam

  • Funaki Y, Yamato T (1999) The core of an economy with a common pool resource: a partition function form approach. Int J Game Theory 28:157–171

    Article  Google Scholar 

  • Hafalir IE (2007) Efficiency in coalition games with externalities. Games Econ Behav 61:242–258

    Article  Google Scholar 

  • Hart S, Kurz M (1983) Endogenous formation of coalitions. Econometrica 51:1047–1064

    Article  Google Scholar 

  • Kóczy L (2007) A recursive core for partition function form games. Theory Decis 63:41–51

    Article  Google Scholar 

  • Kóczy L (2009) Sequential coalition formation and the core in the presence of externalities. Games Econ Behav 66:559–565

    Article  Google Scholar 

  • Kóczy L (2018) Partition function form games, theory and decision library C, vol 48. Springer International Publishing AG, New York

  • Koczy L, Lauwers L (2004) The coalition structure core is accessible. Games Econ Behav 48:86–93

    Article  Google Scholar 

  • Ray D, Vohra R (1997) Equilibrium binding agreements. J Econ Theory 73:30–78

    Article  Google Scholar 

  • Shenoy P (1979) On coalition formation: a game theoretical approach. Int J Game Theory 8:133–164

    Article  Google Scholar 

  • Thrall RM (1961) Generalized characteristic functions for n-person games. In: Proceedings of the Princeton University Conference of Oct. 1961

  • Thrall RM, Lucas WF (1963) n-Person games in partition function form. Nav Res Logist Q 10:281–298

    Article  Google Scholar 

  • von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

  • Xue L (1997) Nonemptiness of the largest consistent set. J Econ Theory 73:453–459

    Article  Google Scholar 

  • Yi SS (1997) Stable coalition structures with externalities. Games Econ Behav 20:201–237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Abe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Takaaki Abe gratefully acknowledges the financial support from JSPS Grant-in-Aid for Research Activity Start-up (No.19K23206) and Waseda Univeristy Grant-in-Aid for Research Base Creation (2019C-486).

Appendix

Appendix

Proof of Lemma 3.1

First, we have \(\sigma ^{S^*}({\mathcal {P}}^S)=\sigma ^{S^*}(\{S\}\cup {\mathcal {P}}_{N{\setminus } S})= \{\sigma ^{S^*}(S)\}\cup \sigma ^{S^*}({\mathcal {P}}_{N{\setminus } S})\). We now focus on \(\sigma ^{S^*}({\mathcal {P}}_{N{\setminus } S})\). Then, we have

$$\begin{aligned} \sigma ^{S^*}({\mathcal {P}}_{N{\setminus } S})= & {} \sigma ^{S^*}(\{(N{\setminus } S)\cap C|C\in {\mathcal {P}}\})\\= & {} \{\sigma ^{S^*}((N{\setminus } S)\cap C)|C\in {\mathcal {P}}\}\\= & {} \{\sigma ^{S^*}(N{\setminus } S)\cap \sigma ^{S^*}(C)|C\in {\mathcal {P}}\}\\= & {} \{(N{\setminus } \sigma ^{S^*}(S))\cap \sigma ^{S^*}(C)|C\in {\mathcal {P}}\}\\&\mathop = \limits ^{{S^*\in {\mathcal {P}}}}&\{(N{\setminus } \sigma ^{S^*}(S))\cap C|C\in {\mathcal {P}}\} ={\mathcal {P}}_{N{\setminus } \sigma ^{S^*}(S)}. \end{aligned}$$

Therefore, we obtain \(\{\sigma ^{S^*}(S)\}\cup {\mathcal {P}}_{N{\setminus } \sigma ^{S^*}(S)}={\mathcal {P}}^{\sigma ^{S^*}(S)}\). \(\square \)

Proof of Proposition 3.2

The proof of \(\Leftarrow \) is clear. Below, we show \(\Rightarrow \). Let \({\mathcal {P}}=\{S_1,\ldots ,S_{|{\mathcal {P}}|}\}\). For every \(S\in {\mathcal {P}}\), let \(\sigma ^S\) satisfy \(\sigma ^S(i)=i\) for every \(i\in N{\setminus } S\), i.e., \(\sigma ^S\) denotes a permutation only for the members in S. Let \(x\in C^{\text {proj}}(v,{\mathcal {P}})\). From the definition of \(C^{\text {proj}}\), it follows that \(\sum _{j\in S}x_j\ge v(S,{\mathcal {P}}^S)\) for any \(S\subseteq N\), and \(\sum _{j\in S}x_j= v(S,{\mathcal {P}})\) for any \(S\in {\mathcal {P}}\). For any \(\sigma \), we define \(\sigma (x)_i:=x_{\sigma (i)}\) for any \(i\in N\). Then, for any \(S\subseteq N\), we have \( \sum _{j\in S}\sigma ^{S_1}(x)_j =\sum _{j\in S}x_{\sigma ^{S_1}(j)} =\sum _{j\in \sigma ^{S_1}(S)}x_{j} \ge v(\sigma ^{S_1}(S),{\mathcal {P}}^{\sigma ^{S_1}(S)}),\) by Lemma 3.1, which equals \( v(\sigma ^{S_1}(S),\sigma ^{S_1}({\mathcal {P}}^S))=v(S,{\mathcal {P}}^S). \) Similarly, it follows from Lemma 3.1, and \(v\in {\mathcal {G}}_N^{S}\) that for every \(S\in {\mathcal {P}}\), \(\sum _{j\in S}\sigma ^{S_1}(x)_j=v(S,{\mathcal {P}})\). Hence, \(\sigma ^{S_1}(x)\in C^{\text {proj}}(v,{\mathcal {P}})\). This holds for every permutation \(\sigma ^{S_1}\). Note that there are \(|S_1|!\) permutations that arrange the members in \(S_1\). We denote the set of the \(|S_1|!\) permutations by \(A^{S_1}\). We define \(y:=\frac{1}{|S_1|!}\sum _{\sigma ^{S_1}\in A^{S_1}}\sigma ^{S_1}(x)\). For any player \(i\in S_1\), we have \(y_i=\frac{1}{|S_1|!}\sum _{\sigma ^{S_1}\in A^{S_1}}\sigma ^{S_1}(x)_i =\frac{1}{|S_1|!}(|S_1|-1)!\left( \sum _{j\in S_1}x_j\right) \). This is equivalent to \(\frac{1}{|S_1|!}(|S_1|-1)!v(S_1,{\mathcal {P}})\), and we obtain \(\frac{v(S_1,{\mathcal {P}})}{|S_1|}\). Hence, allocation y is given as follows: \(y_i:=\frac{v(S_1,{\mathcal {P}})}{|S_1|}\) for every \(i\in S_1\), \(y_i:=x_i\) for every \(i\in N{\setminus } S_1\); and, in view of the convexity of the core, belongs to \(C^{\text {proj}}(v,{\mathcal {P}})\), namely, with slightly abusing the notation, \(y=(e^{S_1},x^{S_2},\ldots ,x^{S_{|{\mathcal {P}}|}})\in C^{\text {proj}}(v,{\mathcal {P}})\). We repeat this process for each \(S_2,\ldots ,S_{|{\mathcal {P}}|}\) and obtain \(e(v,{\mathcal {P}})\in C^{\text {proj}}(v,{\mathcal {P}})\). \(\square \)

Proof of Proposition 3.3

We show that \(e(v,{\mathcal {P}})\not \in C^{\text {proj}}(v,{\mathcal {P}})\). Let S and \(S'\) in \({\mathcal {P}}\) satisfy \(|S|>|S'|\) and \(\frac{v(S,{\mathcal {P}})}{|S|}>\frac{v(S',{\mathcal {P}})}{|S'|}\). There exists a coalition \(T\subseteq N\) such that \(|T|=|S|\) and \(T=S' \cup R\) for some \(\emptyset \ne R\subsetneq S\). We have \(|S{\setminus } T|=|S'|\). Since \(v\in {\mathcal {G}}_N^{S}\), we have \(v(T,\{T\}\cup {\mathcal {P}}_{N{\setminus } T}) =v(T,\{T,S{\setminus } T\}\cup {\mathcal {P}}_{N{\setminus } (T\cup S)}\}) =v(S,\{S,S'\}\cup {\mathcal {P}}_{N{\setminus } (S\cup S')}) =v(S,{\mathcal {P}}).\) Hence, we obtain

$$\begin{aligned} \sum _{j\in T}e_j(v,{\mathcal {P}})= & {} |R|\frac{v(S,{\mathcal {P}})}{|S|}+|S'|\frac{v(S',{\mathcal {P}})}{|S'|} <|R|\frac{v(S,{\mathcal {P}})}{|S|}+|S'|\frac{v(S,{\mathcal {P}})}{|S|}\\= & {} |T|\frac{v(S,{\mathcal {P}})}{|S|}\\= & {} |T|\frac{v(T,\{T\}\cup {\mathcal {P}}_{N{\setminus } T})}{|T|} =v(T,\{T\}\cup {\mathcal {P}}_{N{\setminus } T}) =v(T,{\mathcal {P}}^T). \end{aligned}$$

Thus, \(e(v,{\mathcal {P}})\not \in C^{\text {proj}}(v,{\mathcal {P}})\). \(\square \)

Proof of Proposition 3.5

We first show that \(C^{\text {proj}}(v,{\mathcal {P}})= \emptyset \) for any \({\mathcal {P}}\in \varPi (N){\setminus } \{N\}\). In view of Lemma 3.4, consider \({\mathcal {P}}\ne \{N\}\) satisfying \(k^*:= |S'|\) for every \(S'\in {\mathcal {P}}\). We have \(e_i(v,{\mathcal {P}})=I(k^*)+(|{\mathcal {P}}|-1)E(k^*)\) for every \(i\in N\). Consider \(S\subseteq N\) with \(|S|=k^*+1\). We have

$$\begin{aligned}&v(S,{\mathcal {P}}^S\})-\sum _{j\in S}e_j(v,{\mathcal {P}})\\&\quad =s[I(k^*+1)+E(k^*-1)+(|{\mathcal {P}}|-2)E(k^*)]-s[I(k^*)+(|{\mathcal {P}}|-1)E(k^*)]\\&\quad = s[I(k^*+1)-I(k^*)-(E(k^*)-E(k^*-1))] =s[\varDelta ^I(k^*+1)-\varDelta ^E(k^*)]\\&\quad >s[\varDelta ^I(k^*+1)-\varDelta ^I(k^*)] \ge 0. \end{aligned}$$

Hence, \(e(v,{\mathcal {P}})\not \in C^{\text {proj}}(v,{\mathcal {P}})\). From Proposition 3.2, \(C^{\text {proj}}(v,{\mathcal {P}})=\emptyset \) follows.

Now, we show that \(C^{\text {proj}}(v,\{N\})\ne \emptyset \). For any \(i\in N\), \(e_i(v,\{N\})=I(n)\). For any \(S\subseteq N\), \(v(S,\{S,N{\setminus } S\})=s[I(s)+E(n-s)]\). Hence, for any \(S\subseteq N\), we have

$$\begin{aligned}&\sum _{j\in S}e_j(v,{\mathcal {P}})-v(S,\{S,N{\setminus } S\})=s[I(n)-I(s)-E(n-s)]\\&\quad =s\left[ \sum _{k=s+1}^n\varDelta ^I(k) - \sum _{k=1}^{n-s}\varDelta ^E(k)\right] \ge s\left[ \sum _{k=1}^{n-s}\varDelta ^I(k) - \sum _{k=1}^{n-s}\varDelta ^E(k)\right] >0, \end{aligned}$$

which implies \(C^{\text {proj}}(v,\{N\})\ne \emptyset \). \(\square \)

Proof of Proposition 4.3

If-part: For any coalition S with \(|S|=:s\), we have

$$\begin{aligned} v(S,\{S,N{\setminus } S\})= \left\{ \begin{array}{ll} \max _{p\le c(n-s)}q(p)(p-c(s)) &{}\quad \text { for }h\le s\le n-1,\\ 0 &{}\quad \text{ for } 1\le s\le h-1. \end{array} \right. \end{aligned}$$
(1)

Hence, for any \(S\subseteq N\) with \(h\le s\le n-1\), we obtain \( \sum _{j\in S}e_j(v,N)=s\frac{\pi ^\text {m}}{n} \ge d^{c,q}(s) \overset{(1)}{=}v(S,\{S,N{\setminus } S\}). \) For any \(S\subseteq N\) with \(1\le s\le h-1\), we have \( \sum _{j\in S}e_j(v,N)=s\frac{\pi ^\text {m}}{n}\ge 0 \overset{(1)}{=}v(S,\{S,N{\setminus } S\}). \) Thus, \(e(v,N)\in C^{\text {proj}}(v,\{N\})\).

Only-if-part: From Proposition 3.2, it follows that \(e(v,N)\in C^{\text {proj}}(v,\{N\})\). We have \(v(S,\{S,N{\setminus } S\}) \le |S|\frac{\pi ^\text {m}}{n}\) for every \(S\subseteq N\). Hence, in view of (1), for every \(s=h,\ldots ,n-1\), \(d^{c,q}(s)\le s\frac{\pi ^\text {m}}{n}\). \(\square \)

Proof of Proposition 5.1

We fix a PCP game f and a partition \({\mathcal {P}}\in \varPi (N)\). For convenience, we offer the definition of \(g^{f,{\mathcal {P}}}\) again:

$$\begin{aligned} g^{f,{\mathcal {P}}}(k)= \left\{ \begin{array}{ll} (|{\mathcal {P}}|-k+1)f(|{\mathcal {P}}|) &{}\quad k\le |{\mathcal {P}}|,\\ \frac{1}{|S_{\max }({\mathcal {P}})|}f(|{\mathcal {P}}|) &{}\quad k>|{\mathcal {P}}|. \end{array}\right. \end{aligned}$$
(2)

Proof of  \(\Leftarrow \): Assume that \(C^{\text {proj}}(v,{\mathcal {P}})= \emptyset \). Since \(f(|{\mathcal {P}}|)\ge 0\), \(X_+(v,{\mathcal {P}}):=\{x\in X(v,{\mathcal {P}})|x_j\ge 0\text { for any }j\in N\}\) is not empty. Let \(x\in X_+(v,{\mathcal {P}})\). As the projective core for \({\mathcal {P}}\) is empty, there exists a coalition \(S\subseteq N\) such that

$$\begin{aligned} \sum _{j\in S}x_j< v(S,{\mathcal {P}}^S) = f(k), \end{aligned}$$
(3)

where \(k=|{\mathcal {P}}^S|\). For the coalition S, define \({\mathcal {T}}^S=\{T\in {\mathcal {P}}|\ T\in {\mathcal {P}}_S\}\). Note that \(|{\mathcal {T}}^S|=|{\mathcal {P}}|-k+1\). If \(|{\mathcal {T}}^S|\ge 1\), then \(k\le |{\mathcal {P}}|\). We have \( \sum _{j\in S}x_j = |{\mathcal {T}}^S|\cdot f(|{\mathcal {P}}|)+\sum _{j\in S{\setminus } (\cup _{T\in {\mathcal {T}}^S}T)}x_j \ge |{\mathcal {T}}^S|\cdot f(|{\mathcal {P}}|) =(|{\mathcal {P}}|-k+1)f(|{\mathcal {P}}|). \) Hence, from (3), it follows that \(f(k)> (|{\mathcal {P}}|-k+1)f(|{\mathcal {P}}|)\). However, in view of (2), for any \(k\le |{\mathcal {P}}|\), \(f(k)\le g^{f,{\mathcal {P}}}(k)\) implies that \(f(k)\le (|{\mathcal {P}}|-k+1)f(|{\mathcal {P}}|)\). This is a contradiction.

Next, if \(|{\mathcal {T}}^S|= 0\), then \(k=|{\mathcal {P}}|+1\). Since for any \(x\in X_+(v,{\mathcal {P}})\) there exists \(S\subseteq N\) satisfying (3), such a coalition S also exists for the equal division \(e(f,{\mathcal {P}})\in X_+(v,{\mathcal {P}})\), i.e.,  \(e_j(f,{\mathcal {P}})=\frac{f(|{\mathcal {P}}|)}{|{\mathcal {P}}(j)|}\) for every \(j\in N\). Note that \(e_j(f,{\mathcal {P}})\ge 0\) for every \(j\in N\) as \(f(|{\mathcal {P}}|)\ge 0\). Hence, there exists a player \(i\in S\) such that \(e_i(f,{\mathcal {P}})\le \sum _{j\in S}e_j(f,{\mathcal {P}})<f(k)\) by (3). Moreover, \(e_i(f,{\mathcal {P}})=\frac{f(|{\mathcal {P}}|)}{|{\mathcal {P}}(i)|}\ge \frac{f(|{\mathcal {P}}|)}{|S_{\max }({\mathcal {P}})|}\). Hence, we have \(\frac{f(|{\mathcal {P}}|)}{|S_{\max }({\mathcal {P}})|}< f(k)\). However, in view of (2), for any \(k> |{\mathcal {P}}|\), \(f(k)\le g^{f,{\mathcal {P}}}(k)\) implies that \(f(k)\le \frac{f(|{\mathcal {P}}|)}{|S_{\max }({\mathcal {P}})|}\). This is a contradiction.

Proof of \(\Rightarrow \): We show that if there exists \(k\in \{1,\ldots ,|{\mathcal {P}}|+1\}\) such that \(f(k)>g^{f,{\mathcal {P}}}(k)\), then \(C^{\text {proj}}(v,{\mathcal {P}})= \emptyset \). Assume \(x\in C^{\text {proj}}(v,{\mathcal {P}})\). If \(k\le |{\mathcal {P}}|\), we have \(f(k)>(|{\mathcal {P}}|-k+1)f(|{\mathcal {P}}|)=\sum _{a=1}^{|{\mathcal {P}}|-k+1}\sum _{j\in S_a}x_j\), where \(S_1,\ldots ,S_{|{\mathcal {P}}|-k+1}\) are arbitrary \(|{\mathcal {P}}|-k+1\) coalitions in \({\mathcal {P}}\). Hence, \(|{\mathcal {P}}|-k+1\) coalitions in \({\mathcal {P}}\) have an incentive to jointly deviate by merging and obtain f(k) in total after the deviation. If \(k> |{\mathcal {P}}|\), then (2) implies \(f(k)>\frac{1}{|S_{\max }({\mathcal {P}})|}f(|{\mathcal {P}}|)\). Moreover, there exists \(i\in S_{\max }({\mathcal {P}})\) such that \(x_i<f(k)\), because otherwise for any \(j\in S_{\max }({\mathcal {P}})\) we have \(x_j\ge f(k)\), which implies \(\sum _{j\in S_{\max }({\mathcal {P}})}x_j\ge |S_{\max }({\mathcal {P}})|f(k)\) and \(\sum _{j\in S_{\max }({\mathcal {P}})}x_j=f(|{\mathcal {P}}|)\): a contradiction. Hence, there exists \(i\in S_{\max }({\mathcal {P}})\) such that \(x_i<f(k)\), and the player i has an incentive to deviate. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T., Funaki, Y. The projective core of symmetric games with externalities. Int J Game Theory 50, 167–183 (2021). https://doi.org/10.1007/s00182-020-00745-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-020-00745-x

Keywords

Navigation