Skip to main content

Advertisement

Log in

Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63–84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10–30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albertella A, Migliaccio F, Reguzzoni M, Sansò F (2004) Wiener filters and collocation in satellite gradiometry. In: Sansò PDF (ed) V Hotine-Marussi symposium on mathematical geodesy. Springer, Berlin, pp 32–38

    Chapter  Google Scholar 

  • Albertella A, Migliaccio F, Sansó F (2002) GOCE: the earth gravity field by space gradiometry. In: Celletti A, Ferraz-Mello S, Henrard J (eds) Modern celestial mechanics: from theory to applications. Springer, Dordrecht, pp 1–15

    Google Scholar 

  • Alessio SM (2016) Digital signal processing and spectral analysis for scientists. Springer International Publishing, Cham

    Book  Google Scholar 

  • Amjadiparvar B, Rangelova E, Sideris MG (2015) The GBVP approach for vertical datum unification: recent results in North America. J Geod 90:45–63. doi:10.1007/s00190-015-0855-8

    Article  Google Scholar 

  • Bartlett MS (1948) Smoothing periodograms from time-series with continuous spectra. Nature 161:686–687. doi:10.1038/161686a0

    Article  Google Scholar 

  • Bartlett MS (1950) Periodogram analysis and continuous spectra. Biometrika 37:1–16. doi:10.1093/biomet/37.1-2.1

    Article  Google Scholar 

  • Bendat JS, Piersol AG (1993) Engineering applications of correlation and spectral analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Cesare S (2008) Performance requirements and budgets for the gradiometric mission. Thales Alenia Space, Torino

    Google Scholar 

  • Eshagh M (2009) On satellite gravity gradiometry. PhD Thesis, Royal Institute of Technology (KTH)

  • Eshagh M, Abdollahzadeh M (2010) Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data. Earth Sci Inform 3:149–158. doi:10.1007/s12145-010-0062-3

    Article  Google Scholar 

  • Eshagh M, Abdollahzadeh M (2012) Software for generating gravity gradients using a geopotential model based on an irregular semivectorization algorithm. Comput Geosci 39:152–160. doi:10.1016/j.cageo.2011.06.003

    Article  Google Scholar 

  • Floberghagen R, Fehringer M, Lamarre D et al (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85:749–758. doi:10.1007/s00190-011-0498-3

    Article  Google Scholar 

  • Fuchs MJ, Bouman J (2011) Rotation of GOCE gravity gradients to local frames. Geophys J Int 187:743–753. doi:10.1111/j.1365-246X.2011.05162.x

    Article  Google Scholar 

  • Gatti A, Reguzzoni M, Venuti G (2012) The height datum problem and the role of satellite gravity models. J Geod 87:15–22. doi:10.1007/s00190-012-0574-3

    Article  Google Scholar 

  • Gatti A, Reguzzoni M, Migliaccio F, Sansò F (2014) Space-wise grids of gravity gradients from GOCE data at nominal satellite altitude. In: 5th international GOCE user workshop, Paris, 25–28 Nov 2014

  • Ghobadi-Far K, Sharifi MA, Sneeuw N (2015) GOCE gradiometry data processing using the Rosborough approach. J Geod 89:1245–1261. doi:10.1007/s00190-015-0849-6

    Article  Google Scholar 

  • Grebenitcharsky R, Moore P (2014) Application of wavelets for along-track multi-resolution analysis of GOCE SGG data. In: Marti U (ed) Gravity, geoid and height systems. Springer International Publishing, Cham, pp 41–50

    Google Scholar 

  • Gruber T, Abrikosov O, Hugentobler U (2010a) GOCE High Level Processing Facility. GOCE Standards. Technical Report GO-TN-HPFGS-0111, Issue 3.2

  • Gruber T, Rummel R, Abrikosov O, van Hees R (2010b) GOCE High Level Processing Facility. GOCELevel 2 Product Data Handbook. Technical Report GO-MA-HPF-GS-0110, Issue 4.3

  • Haykin SS (2014) Adaptive filter theory, 5th edn. Pearson, Upper Saddle River

    Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Wien, New York

    Google Scholar 

  • Ince ES, Pagiatakis SD (2016) Effects of space weather on GOCE electrostatic gravity gradiometer measurements. J Geod 90:1–15. doi:10.1007/s00190-016-0931-8

    Article  Google Scholar 

  • Ince S, Pagiatakis S (2014) Improvement of GOCE level 1b gradiometer data processing over magnetic poles. CGUs Newsl Elem 32:39

    Google Scholar 

  • Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 75:85–101. doi:10.1023/A:1008313405488

    Article  Google Scholar 

  • Kern M, Preimesberger T, Allesch M et al (2005) Outlier detection algorithms and their performance in GOCE gravity field processing. J Geod 78:509–519. doi:10.1007/s00190-004-0419-9

    Article  Google Scholar 

  • Klees R, Ditmar P (2004) How to handle colored noise in large least-squares problems in the presence of data gaps? In: Sansò PDF (ed) V Hotine-Marussi symposium on mathematical geodesy. Springer, Berlin, pp 39–48

    Chapter  Google Scholar 

  • Lemoine FG, Smith DE, Kunz L et al (1997) The development of the NASA GSFC and NIMA joint geopotential model. In: Segawa PDJ, Fujimoto PDH, Okubo PDS (eds) Gravity, geoid and marine geodesy. Springer, Berlin, pp 461–469

    Chapter  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geod 78:304–313. doi:10.1007/s00190-004-0396-z

    Article  Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Wichmann [u.a.], Karlsruhe

    Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res Solid Earth 117:B04406. doi:10.1029/2011JB008916

    Article  Google Scholar 

  • Polgár Z, Sujbert L, Földváry L et al (2013) Filter design for GOCE gravity gradients. Geocarto Int 28:28–36. doi:10.1080/10106049.2012.687401

    Article  Google Scholar 

  • Reguzzoni M (2003) From the time-wise to space-wise GOCE observables. Adv Geosci 1:137–142. doi:10.5194/adgeo-1-137-2003

    Article  Google Scholar 

  • Reguzzoni M, Tselfes N (2008) Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J Geod 83:13–29. doi:10.1007/s00190-008-0225-x

    Article  Google Scholar 

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777–790. doi:10.1007/s00190-011-0500-0

    Article  Google Scholar 

  • Sansò F, Tscherning CC (2003) Fast spherical collocation: theory and examples. J Geod 77:101–112. doi:10.1007/s00190-002-0310-5

    Article  Google Scholar 

  • Sideris MG, Rangelova E, Amjadiparvar B (2014) First results on height system unification in North America using GOCE. In: Marti U (ed) Gravity, geoid and height systems. Springer International Publishing, Cham, pp 221–227

    Google Scholar 

  • Tziavos IN, Vergos GS, Grigoriadis VN et al (2015) Validation of GOCE/GRACE satellite only and combined global geopotential models over greece in the frame of the GOCESeaComb project. Springer, Berlin

    Book  Google Scholar 

  • Visser PNAM, van den IJssel JAA (2015) Calibration and validation of individual GOCE accelerometers by precise orbit determination. J Geod 90:1–13. doi:10.1007/s00190-015-0850-0

  • Wan X-Y, Yu J-H, Zeng Y-Y (2012) Frequency analysis and filtering processing of gravity gradient data from GOCE. Chin J Geophys 55:530–538. doi:10.1002/cjg2.1747

    Article  Google Scholar 

  • Yu J, Zhao D (2010) The gravitational gradient tensor’s invariants and the related boundary conditions. Sci China Earth Sci 53:781–790. doi:10.1007/s11430-010-0014-2

    Article  Google Scholar 

  • Zhou R, Wu X (2015) An iterative Wiener filtering method based on the gravity gradient invariants. Geod Geodyn 6:286–291. doi:10.1016/j.geog.2015.06.002

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work has been provided by a grant from Canada’s Natural Sciences and Engineering Research Council (NSERC) to the second author. The GOCE data used in this study were provided by Prof. I. N. Tziavos within the GOCESeaComb project. Dr. Andrea Gatti, Researcher at Politecnico di Milano, is thanked for his useful insights and comments concerning the space-wise approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Piretzidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piretzidis, D., Sideris, M.G. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach. J Geod 91, 1069–1086 (2017). https://doi.org/10.1007/s00190-017-1010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1010-5

Keywords

Navigation