Skip to main content
Log in

Downward continuation of gravitational field quantities to an irregular surface by spectral weighting

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In geophysical and geodetic studies, gravity inversion is typically performed such that observed gravity values are first continued downward onto a regular (planar, spherical or spheroidal) surface by solving an inverse integral transform, which originates from a classical solution to the first boundary-value problem in potential theory. A typical example is continuing gravity observed at the topographic surface down to the mean sea level (geoid). Nowadays, gravity-dedicated satellite missions and aerial gravimetry provide gravity data above the topographic surface in addition to classical terrestrial gravity observations. For specific purposes (such as gravity data combination and validation, or quasigeoid determination), satellite and aerial gravity observations have to be continued to the irregular topographic surface. In this study, we address this issue by formulating a functional model for a spectral downward continuation of selected gravitational field quantities to an irregular topographic surface. Moreover, we generalize this functional model to allow for transformation between different types of gravitational field quantities. In particular, we derive spectral weights for estimation of the disturbing potential or disturbing/anomalous gravity at the Earth’s surface by combining the first-, second- and third-order radial gradients of the disturbing potential (disturbing gradients). The correctness of the developed combined spectral estimator is verified in a closed-loop test based on synthetic satellite disturbing gradients. The combined spectral estimator is applied to simulated satellite disturbing gradients polluted by a realistic Gaussian noise. Results of the numerical experiments show that the combined spectral estimator puts the highest importance on the least polluted disturbing gradient, while the contribution of the least accurate disturbing gradient is negligible. An important advantage of this spectral combination method is that no matrix inversion with numerical instabilities requiring regularization is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The global geopotential model EIGEN-6C4 is freely available via ICGEM (International Centre for Global Earth Models) website. The digital elevation model Earth2014 SUR is publically accessible via following link http://ddfe.curtin.edu.au/models/Earth2014/.

References

  • Abdallah A (2009) Determination of a gravimetric geoid model of Sudan using the KTH method. MSc thesis, Royal Institute of Technology, Stockholm, Sweden

  • Ågren J (2004a) The analytical continuation bias in geoid determination using potential coefficients and terrestrial gravity data. J Geodesy 78:314–332

    Google Scholar 

  • Ågren J (2004b) Regional geoid determination methods for the era of satellite gravimetry, numerical investigations using synthetic Earth gravity models. Doctoral thesis, Royal Institute of Technology, Stockholm, Sweden

  • Ågren J, Sjöberg LE, Kiamehr R (2009) The new gravimetric quasigeoid model KTH08 over Sweden. Journal of Applied Geodesy 3:143–153

    Google Scholar 

  • Arabelos D, Tscherning CC (1990) Simulation of regional gravity field recovery from satellite gravity gradiometer data using collocation and FFT. J Geodesy 64:363–382

    Google Scholar 

  • Arabelos D, Tscherning CC (1995) Regional recovery of the gravity field from SGG and gravity vector data using collocation. J Geophys Res 100(B11):22009–22015

    Google Scholar 

  • Ardalan AA, Grafarend EW (2004) High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid. J Geodesy 78(1–2):138–156

    Google Scholar 

  • Arnold K (1978) The spherical-harmonics expansion of the gravitational potential of the Earth in the external space and its convergence. Gerlands Betri Geophysik Leipzig 87(2):81–90

    Google Scholar 

  • Arnold K (1980) Picone’s theorem and the convergence of the expansion in spherical harmonics of the gravitational potential of the Earth in the external space. Bollettino di Geofisica Teorica ed Applicata 22(86):95–103

    Google Scholar 

  • Balakin AB, Daishev RA, Murzakhanov ZG, Skochilov AF (1997) Laser-interferometric detector of the first, second and third derivatives of the potential of the Earth gravitational field. Izvestiya vysshikh uchebnykh zavedenii, seriya Geologiya i Razvedka 1:101–107 (in Russian)

    Google Scholar 

  • Barzaghi R, Tselfes N, Tziavos IN, Vergos GS (2009) Geoid and high resolution topography modelling in the Mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation. J Geodesy 83:751–772

    Google Scholar 

  • Bjerhammar A (1962) Gravity reduction to a spherical surface. Report of the Royal Institute of Technology, Geodesy Division, Stockholm

  • Bjerhammar A (1963) A new theory of gravimetric geodesy. Report of the Royal Institute of Technology, Geodesy Division, Stockholm

  • Bjerhammar A (1976) A Dirac approach to physical geodesy. Zeitschrift für Vermessungswessen 101:41–44

    Google Scholar 

  • Bjerhammar A (1987) Discrete physical geodesy. Report 380, Department of Geodetic Science, The Ohio State University, Columbus, USA

  • Brieden P, Müller J, Flury J, Heinzel G (2010) The mission option OPTIMA—novelties and benefit. In: Münch U, Dransch W (eds) GEOTECHNOLOGIEN Science Report, Potsdam, vol 17, pp 134–139

  • Bruns H (1878) Die Figur der Erde. Publikation des Preussischen Geodeätischen Instituts, Berlin

    Google Scholar 

  • Chen J, Pereverzyev S Jr, Xu Y (2015) Aggregation of regularized solutions from multiple observation models. Inverse Prob 31:075005

    Google Scholar 

  • Claessens SJ (2006) Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD thesis, Curtin University of Technology, Department of Spatial Sciences, Perth, Australia

  • Colombo OL (1982) Convergence of the external expansion of the gravity field inside the bounding sphere. Manuscripta Geodaetica 7:209–246

    Google Scholar 

  • Cruz JY (1985) Disturbance vector in space from surface gravity anomalies using complementary models. Report 366, Department of Geodetic Science, The Ohio State University, Columbus, USA

  • Dransfield MH, Lee JB (2004) The FALCON® airborne gravity gradiometer survey systems. In: Lane R (ed) Proceedings of the Airborne Gravity 2004–Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop, Geoscience Australia Record, 2004/18, pp 15–19

  • Eicker A (2012) Gravity field refinement by radial basis functions from in situ satellite data. Deutsche Geodätische Kommission, Reihe C, No. 676, München, Germany

  • Eicker A, Mayer-Gürr T, Ilk KH (2005) Global gravity field solutions based on a simulation scenario of GRACE SST data and regional refinements by GOCE SGG observations. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, Geoid and Space Missions, IAG Symposia Series, Springer, Berlin, vol 129, pp 66–71

  • Eicker A, Schall J, Kusche J (2014) Regional gravity modelling from spaceborne data: case studies with GOCE. Geophys J Int 196:1431–1440

    Google Scholar 

  • ESA (1999) Gravity field and stead-state ocean circulation. Technical report. Reports for Mission Selection—The Four Candidate Earth Explorer Core Missions, ESA SP -1233(1)

  • Eshagh M (2012) Spectral combination of spherical gradiometric boundary-value problems: a theoretical study. Pure Appl Geophys 169:2201–2215

    Google Scholar 

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Schaller T, Götze HJ, Ebbing J, Marty JC, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4—the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. In: 5th International GOCE User Workshop Paris, 25–28 November 2014

  • Freeden W, Nutz H (2018) Geodetic observables and their mathematical treatment in multiscale framework. In: Freeden W, Nashed M (eds) Handbook of mathematical geodesy. Geosystems mathematics. Birkhäuser, Cham, pp 315–458

    Google Scholar 

  • Freeden W, Schreiner M (2010) Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Berlin, pp 270–302

    Google Scholar 

  • Freeden W, Glockner O, Thalhammer M (1999) Multiscale gravitational field recovery from GPS-satellite-to-satellite tracking. Stud Geophys Geod 43(3):229–264

    Google Scholar 

  • Freeden W, Nutz H, Schreiner M (2018) Geomathematical advances in satellite gravity gradiometry (SGG). In: Freeden W, Nashed MZ (eds) Handbook of mathematical geodesy. Geosystems mathematics. Birkhäuser, Cham, pp 561–604

    Google Scholar 

  • Gerhards C (2014) A combination of downward continuation and local approximation for harmonic potentials. Inverse Prob 30:085004

    Google Scholar 

  • Gitlein O, Denker H, Müller J (2005) Local geoid computation by the spectral combination method. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions, IAG Symposia, Springer, Berlin, vol 129, pp 179–184

  • Hansen PC (1990) Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Comput 11:503–518

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco, USA, p 364

    Google Scholar 

  • Hirt C, Rexer M (2015) Earth 2014: 1 arc-min shape, topography, bedrock and ice-sheet models—available as gridded data and degree-10,800 spherical harmonics. Int J Appl Earth Obs Geoinf 39:103–112

    Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer, Austria

    Google Scholar 

  • Ihde J, Sánchez L, Barzaghi R, Drewes H, Foerste C, Gruber T, Liebsch G, Marti U, Pail R, Sideris M (2017) Definition and proposed realization of the International Height Reference System (IHRS). Surv Geophys 38(3):549–570

    Google Scholar 

  • Jekeli C (1981) The downward continuation to the Earth’s surface of the truncated spherical and ellipsoidal harmonic series of gravity and height anomalies. Technical Report 327, Department of Geodetic Science, The Ohio State University, Columbus, USA

  • Jekeli C (1983) A numerical study of the divergence of spherical harmonic series of the gravity and height anomalies at the Earth’s surface. Bull Géod 57:10–28

    Google Scholar 

  • Jekeli C (1987) The downward continuation of aerial gravimetric data without density hypothesis. Bull Géod 61(4):319–329

    Google Scholar 

  • Jiang T, Wang YM (2016) On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation. J Geod 90(12):1405–1418

    Google Scholar 

  • Kern M, Schwarz KP, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geod 77:217–225

    Google Scholar 

  • Kiamehr R (2006) Precise gravimetric geoid model for Iran based on GRACE and SRTM data and the least-squares modification of Stokes formula with some geodynamic interpretations. Doctoral thesis, Royal Institute of Technology, Stockholm, Sweden

  • Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geodesy 76:259–268

    Google Scholar 

  • Krarup T (1969) A contribution to the mathematical foundation of physical geodesy, vol 44. Danish Geodetic Institute, Copenhagen

    Google Scholar 

  • Levallois JJ (1973) General remark on the convergence of the expansion of the Earth potential in spherical harmonics. Translated from French, DMAAC-TC-1915, St. Louis, MO, USA

  • Lieb V, Bouman J, Dettmering D, Fuchs M, Schmidt M (2015) Combination of GOCE gravity gradients in regional gravity field modelling using radial basis functions. In: Sneeuw N, Novák P, Crespi M, Sanso F (eds) Proceedings of the 8th Hotine-Marussi symposium, Rome, Italy, June 17–21, 2013, IAG Symposia Series, Springer, Berlin, vol 142, pp 101–108

  • Mansi AH, Capponi M, Sampietro D (2018) Downward continuation of airborne gravity data by means of the change of boundary approach. Pure Appl Geophys 175:977–988

    Google Scholar 

  • Martinec Z (1995) Numerical stability of the least-squares solution of the discrete altimetry-gravimetry boundary-value problem for determination of the global gravity model. Geophys J Int 123:715–726

    Google Scholar 

  • Martinec Z (1996) Stability investigation of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. J Geodesy 70:805–828

    Google Scholar 

  • Moritz H (1961) Über die Konverhenz der Kugelfunktions entwicklung für das Aussenraum Potential an der Erdoberfläche. Österr Z f Vermessungswesen 49(1):11–15

    Google Scholar 

  • Moritz H (1978) On the convergence of the spherical harmonic expansion for the geopotential at the Earth’s surface. Anno XXXVII-Bolletino di Geodesia e Scienze Affini 2–3:363–381

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geodesy 74:128–140

    Google Scholar 

  • Morrison F (1969) Validity of expansion of the potential near the surface of the Earth. Presented at the IV the Symposium on Mathematical Geodesy, Trieste

  • Novák P (2003) Geoid determination using one-step integration. J Geodesy 77(3–4):193–206

    Google Scholar 

  • Novák P, Šprlák M, Tenzer R, Pitoňák M (2017) Integral formulas for transformation of potential field parameters in geosciences. Earth Sci Rev 164(1):208–231

    Google Scholar 

  • Pitoňák M, Eshagh M, Šprlák M, Tenzer R, Novák P (2018) Spectral combination of spherical gravitational curvature boundary-value problems. Geophys J Int 214(2):773–791

    Google Scholar 

  • Reed GB (1973) Application of kinematical geodesy for determining the short wavelength component of the gravity field by satellite gradiometry. Report 201, Department of Geodetic Science, The Ohio State University, Columbus, USA

  • Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001

    Google Scholar 

  • Rummel R, Schwarz KP, Gerstl M (1979) Least squares collocation and regularization. Bull Geod 53:343–361

    Google Scholar 

  • Rummel R, Teunissen M, van Gelderen M (1989) Unique and overdetermined geodetic boundary value problems by least squares. Bull Géod 63:1–33

    Google Scholar 

  • Rust BW, Burrus WR (1972) Mathematical programming and the numerical solution of linear equations. Elsevier, New York

    Google Scholar 

  • Sampietro D, Capponi M, Mansi A, Gatti A, Marchetti P, Sansò F (2017) Space-wise approach for airborne gravity data modelling. J Geod 91:535–545

    Google Scholar 

  • Sansò F, Sideris MG (2017) Geodetic boundary value problem: the equivalence between Molodensky’s and Helmert’s solutions. Springer briefs in earth sciences. Springer, New York

    Google Scholar 

  • Schneider F (1997) Inverse problems in satellite geodesy and their approximate solution by splines and wavelets. Doctoral thesis, University of Kaiserslautern, Geomathematics Group, Shaker

  • Schwarz KP (1973) Investigations on the downward continuation of aerial gravity data. Report 204, Department of Geodetic Science, The Ohio State University, Columbus, USA

  • Schwarz KP, Krynski J (1977) Improvement of the geoid in local areas by satellite gradiometry. Bull Géod 51:163–176

    Google Scholar 

  • Sjöberg, LE (1977) On the errors of spherical harmonic developments of gravity at the surface of the Earth. Report 273, Department Geodetic Science, The Ohio State University, Columbus, USA

  • Sjöberg LE (1978) A comparison of Bjerhammar’s methods and collocation in physical geodesy. Report 273, Department of Geodetic Science, The Ohio State University, Columbus, USA

  • Sjöberg LE (1980a) Least squares combination of satellite harmonics and integral formulas in physical geodesy. Gerlands Beiträge zur Geophysik 89:371–377

    Google Scholar 

  • Sjöberg LE (1980b) On the convergence problem for the spherical harmonic expansion of the geopotential at the surface of the Earth. Bollettino di Geofisica e Science Affini 39(3):261–270

    Google Scholar 

  • Sjöberg LE (1981) Least squares combination of satellite and terrestrial data in physical geodesy. Ann Geophys 37:25–30

    Google Scholar 

  • Sjöberg LE (1984) Least-squares modification of Stokes’ and Vening-Meinez’ formula by accounting for truncation and potential coefficients errors. Manuscripta Geodaetica 9:209–229

    Google Scholar 

  • Sjöberg LE (1999) On the downward continuation error at the Earth’s surface and the geoid of satellite derived geopotential models. Bollettino di Geofisica e Science Affini 58(3):215–229

    Google Scholar 

  • Sjöberg LE (2001) The effect of downward continuation of gravity anomaly to sea level in Stokes’ formula. J Geodesy 74:794–804

    Google Scholar 

  • Sjöberg LE (2003) A solution to the downward continuation effect on the geoid determined by Stokes’ formula. J Geod 77(1–2):94–100

    Google Scholar 

  • Sjöberg LE, Eshagh M (2012) A theory on geoid modelling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth gravitational model. Acta Geodaetica et Geophysica Hungarica 47(1):13–28

    Google Scholar 

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Deutsche Geodätische Kommission, Reihe C, Nr. 527, München, Germany, 112 pp

  • Šprlák M, Novák P, Pitoňák M (2016) Spherical harmonic analysis of gravitational curvatures and its implications for future satellite missions. Surv Geophys 37:681–700

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607

    Google Scholar 

  • Tenzer R, Foroughi I, Hirt C, Novák P, Pitoňák M (2019) How to calculate Bouguer gravity data in planetary studies. Surv Geophys 40(1):107–132

    Google Scholar 

  • Tikhonov AN (1963) Regularization of incorrectly posed problems. Soviet Mathematics Doklady 4:1624–1627 (in Russian)

    Google Scholar 

  • Tkachenko P (2015) Regularization by aggregation of global and local data on the sphere. Comput Methods Appl Math 16(2):299–307

    Google Scholar 

  • Tscherning CC (1988) A study of satellite altitude influence on the sensitivity of gravity gradiometer measurements. Deutsche Geodätische Kommission, Reihe C, No. 287, München, Germany

  • Tscherning CC (1989) A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements. Ric di Geod Topogr Fotogramm 5:139–146

    Google Scholar 

  • Tscherning CC, Forsberg R, Vermeer M (1990) Methods for regional gravity field modelling from SST and SGG data. Reports of the Finnish Geodetic Institute, 90: 2, Helsinki, Finland

  • Ulotu P (2009) Geoid model of Tanzania from sparse and varying gravity data density by the KTH method. Doctoral thesis, Royal Institute of Technology, Stockholm, Sweden

  • Vajda P, Vaníček P, Novák P, Tenzer R, Ellmann A (2007) Secondary indirect effects in gravity anomaly data inversion or interpretation. J Geophys Res Solid Earth 112(B06411)

  • Vaníček P, Martinec Z (1994) The Stokes-Helmert scheme for the evaluation of a precise geoid. Manuscripta Geodaetica 19:119–128

    Google Scholar 

  • Vaníček P, Sun W, Ong P, Martinec Z, Najafi M, Vajda P, Ter Horst B (1996) Downward continuation of Helmert’s gravity. J Geodesy 71(1):21–34

    Google Scholar 

  • Vaníček P, Novák P, Martinec Z (2001) Geoid, topography, and the Bouguer plate or shell. J Geod 75(4):210–215

    Google Scholar 

  • Vaníček P, Tenzer R, Sjöberg LE, Martinec Z, Featherstone WE (2004) New views of the spherical Bouguer gravity anomaly. Geophys J Int 159(2):460–472

    Google Scholar 

  • Wang YM (1988) Downward continuation of the free-air gravity anomalies to the ellipsoid using the gradient solution, Poisson’s integral and terrain correction—numerical comparison and computations. Report 393, Department of Geodetic Science, The Ohio State University, Columbus, USA

  • Wang YM (1994) On the error of analytical downward continuation under planar approximation. Manuscripta Geodaetica 20:34–45

    Google Scholar 

  • Wang YM (1997) On the error of analytical downward continuation of the Earth’s external gravitational potential on and inside the Earth’s surface. J Geod 71:70–82

    Google Scholar 

  • Wenzel HG (1981) Zur Geoidbestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit hilfe von Integralformeln. ZFV—Zeitschrift für Geodäsie Geoinformation und Landmanagement 106(3):102–111 (in German)

    Google Scholar 

  • Wenzel HG (1982) Geoid computation by least squares spectral combination using integral kernels. In: Proceedings IAG general meeting, Tokyo, Springer, Berlin, pp 438–453

  • Xu P, Fukuda Y, Liu Y (2006) Multiple parameter regularization: numerical solutions and applications to determination of geopotential from precise satellite orbits. J Geod 80:17–27

    Google Scholar 

  • Yildiz H (2012) A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud Geophy et Geod 56:171–184

    Google Scholar 

Download references

Acknowledgement

Martin Pitoňák and Pavel Novák were supported by the project “Research and development of intelligent components of advanced technologies for the Pilsen metropolitan area” (CZ.02.1.01/0.0/0.0/17_048/0007267). Michal Šprlák was supported by the project No. 18-06943S of the Czech Science Foundation. Furthermore, we would like to thank to the Editor-in-Chief of the Journal of Geodesy Prof. Jürgen Kusche and Editor Prof. Volker Michel for handling our manuscript. Thoughtful and constructive comments of three anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MP designed the study, derived corresponding formulas, performed numerical experiments and drafted the manuscript. PN and MŠ checked out derived formulas. PN, ME, RT and MŠ read, commented and approved the final manuscript.

Corresponding author

Correspondence to Martin Pitoňák.

Appendices

Appendix A: Formulas for transforming the first-, second- and third-order disturbing gradients onto the disturbing potential, gravity disturbance and gravity anomaly

Integral transforms between the disturbing potential and its first-, second- and third-order disturbing gradients are defined as (Novák et al. 2017):

$$\begin{aligned} T_{{}}^{z} (r_{\text{Top}} ,\varOmega ) &= - \frac{{r_{\text{Top}} }}{4\pi }\\&\quad\times\int\limits_{{\varOmega^{\prime}}} { {\left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{ {2n + 1} }}{n + 1}\frac{1}{{t^{{\left( {n + 2} \right)}} }}} P_{n} (\cos \psi )} \right] \, T_{z} (R_{\text{MOS}} ,\varOmega^{\prime})} } {\text{d}}\varOmega^{\prime}, \end{aligned}$$
(A.1)
$$\begin{aligned} T_{{}}^{zz} (r_{\text{Top}} ,\varOmega ) &= \frac{{r_{\text{Top}}^{2} }}{4\pi }\\ \quad&\times\int\limits_{{\varOmega^{\prime}}} { {\left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{ {2n + 1} }}{(n + 1)(n + 2)}} \frac{1}{{t^{{\left( {n + 3} \right)}} }}P_{n} (\cos \psi )} \right] \, T_{zz} (R_{\text{MOS}} ,\varOmega^{\prime})} } {\text{d}}\varOmega^{\prime}, \end{aligned} $$
(A.2)
$$ \begin{aligned}T_{{}}^{zzz} (r_{\text{Top}} ,\varOmega ) &= - \frac{{r_{\text{Top}}^{3} }}{4\pi }\\&\quad\times\int\limits_{{\varOmega^{\prime}}} \left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{ {2n + 1} }}{(n + 1)(n + 2)(n + 3)}} \frac{1}{{t^{{\left( {n + 4} \right)}} }}P_{n} (\cos \psi )} \right] \\&\quad \times T_{zzz} (R_{\text{MOS}} ,\varOmega^{\prime}) {\text{d}}\varOmega^{\prime}. \end{aligned}$$
(A.3)

Relations between the gravity disturbance and the first-, second- and third-order disturbing gradients read as follows (Novák et al. 2017):

$$\begin{aligned} \delta g_{{}}^{z} (r_{\text{Top}} ,\varOmega ) &= - \frac{1}{4\pi }\\&\quad\times\int\limits_{{\varOmega^{\prime}}} { {\left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\left( {2n + 1} \right)\frac{1}{{t^{{\left( {n + 2} \right)}} }}} P_{n} (\cos \psi )} \right] \, T_{z} (R_{\text{MOS}} ,\varOmega^{\prime})} } {\text{d}}\varOmega^{\prime}, \end{aligned}$$
(A.4)
$$ \begin{aligned}\delta g_{{}}^{zz} (r_{\text{Top}} ,\varOmega ) &= \frac{{r_{\text{Top}}^{{}} }}{4\pi }\\&\quad\times\int\limits_{{\varOmega^{\prime}}} { {\left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{ {2n + 1} }}{n + 2}} \frac{1}{{t^{{\left( {n + 3} \right)}} }}P_{n} (\cos \psi )} \right] \, T_{zz} (R_{\text{MOS}} ,\varOmega^{\prime})} } {\text{d}}\varOmega^{\prime}, \end{aligned}$$
(A.5)
$$\begin{aligned} \delta g_{{}}^{zzz} (r_{\text{Top}} ,\varOmega ) &= - \frac{{r_{\text{Top}}^{2} }}{4\pi }\\ &\quad\times\int\limits_{{\varOmega^{\prime}}} \left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{ {2n + 1} }}{(n + 2)(n + 3)}} \frac{1}{{t^{{\left( {n + 4} \right)}} }}P_{n} (\cos \psi )} \right] \\ &\quad \times T_{zzz} (R_{\text{MOS}} ,\varOmega^{\prime}) {\text{d}}\varOmega^{\prime}. \end{aligned}$$
(A.6)

The gravity anomaly can be calculated from the first-, second- and third-order disturbing gradients via the following integral transformations (Novák et al. 2017):

$$\begin{aligned} \Delta g_{{}}^{z} (r_{\text{Top}} ,\varOmega ) &= - \frac{1}{4\pi }\\&\quad\times\int\limits_{{\varOmega^{\prime}}} { {\left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{\left( {2n + 1} \right)\left( {n - 1} \right)}}{{ {n + 1} }}\frac{1}{{t^{{\left( {n + 2} \right)}} }}} P_{n} (\cos \psi )} \right] \, T_{z} (R_{\text{MOS}} ,\varOmega^{\prime})} } {\text{d}}\varOmega^{\prime}, \end{aligned}$$
(A.7)
$$\begin{aligned} \Delta g_{{}}^{zz} (r_{\text{Top}} ,\varOmega ) &= \frac{{r_{\text{Top}}^{{}} }}{4\pi }\\&\quad\times\int\limits_{{\varOmega^{\prime}}} { {\left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{\left( {2n + 1} \right)\left( {n - 1} \right)}}{{\left( {n + 1} \right)(n + 2)}}} \frac{1}{{t^{{\left( {n + 3} \right)}} }}P_{n} (\cos \psi )} \right] \, T_{zz} (R_{\text{MOS}} ,\varOmega^{\prime})} } {\text{d}}\varOmega^{\prime}, \end{aligned}$$
(A.8)
$$\begin{aligned} \Delta g_{{}}^{zzz} (r_{\text{Top}} ,\varOmega ) &= - \frac{{r_{Top}^{2} }}{4\pi }\\&\quad\times\int\limits_{{\varOmega^{\prime}}} \left[ {\sum\limits_{n}^{{N_{\text{max} } }} {\frac{{\left( {2n + 1} \right)\left( {n - 1} \right)}}{{\left( {n + 1} \right)(n + 2)(n + 3)}}} \frac{1}{{t^{{\left( {n + 4} \right)}} }}P_{n} (\cos \psi )} \right] \\ &\quad\times T_{zzz} (R_{\text{MOS}} ,\varOmega^{\prime}) {\text{d}}\varOmega^{\prime}, \end{aligned}$$
(A.9)

Appendix B: Formulas for empirical signal and error degree-order variances of the disturbing gradients

The signal degree-order variances of the disturbing potential, gravity disturbance and gravity anomaly, respectively, are defined as follows:

$$ c_{n,P}^{{}} = \frac{{G^{2} M^{2} }}{{R^{2} }}\left( {\frac{R}{r}} \right)^{2n + 2} \sum\limits_{m} {\bar{C}_{n,m}^{2} } , $$
(B.1)
$$ c_{n,H}^{{}} = \frac{{G^{2} M^{2} }}{{R^{4} }}\left( {\frac{R}{r}} \right)^{2n + 4} (n + 1)^{2} \sum\limits_{m} {\bar{C}_{n,m}^{2} } , $$
(B.2)
$$ c_{n,S}^{{}} = \frac{{G^{2} M^{2} }}{{R^{4} }}\left( {\frac{R}{r}} \right)^{2n + 4} (n - 1)^{2} \sum\limits_{m} {\bar{C}_{n,m}^{2} } , $$
(B.3)

where \( \bar{C}_{n,m}^{{}} \) are the fully normalized geopotential coefficients of the degree n and order m. The signal degree-order variances of the first-, second and third-order disturbing gradients are defined as follows:

$$ c_{{n,T_{z} }}^{{}} = \frac{{G^{2} M^{2} }}{{R^{4} }}\left( {\frac{R}{r}} \right)^{2n + 4} \left( {n + 1} \right)^{2} \sum\limits_{m} {\bar{C}_{n,m}^{2} } , $$
(B.4)
$$ c_{{n,T_{zz} }}^{{}} = \frac{{G^{2} M^{2} }}{{R^{6} }}\left( {\frac{R}{r}} \right)^{2n + 6} \left[ {(n + 1)(n + 2)} \right]^{2} \sum\limits_{m} {\bar{C}_{n,m}^{2} } , $$
(B.5)
$$ c_{{n,T_{zzz} }}^{{}} = \frac{{G^{2} M^{2} }}{{R^{8} }}\left( {\frac{R}{r}} \right)^{2n + 8} \left[ {(n + 1)(n + 2)(n + 3)} \right]^{2} \sum\limits_{m} {\bar{C}_{n,m}^{2} } . $$
(B.6)

The corresponding error degree-order variances of the disturbing gradients are given according to the following formulas:

$$ \sigma_{{n,T_{z} }}^{2} = \frac{{G^{2} M^{2} }}{{R^{4} }}\left( {\frac{R}{r}} \right)^{2n + 4} \left( {n + 1} \right)^{2} \sum\limits_{m} {\sigma_{{\bar{C}_{n,m} }}^{2} } , $$
(B.7)
$$ \sigma_{{n,T_{zz} }}^{2} = \frac{{G^{2} M^{2} }}{{R^{6} }}\left( {\frac{R}{r}} \right)^{2n + 6} [(n + 1)(n + 2)]^{2} \sum\limits_{m} {\sigma_{{\bar{C}_{n,m} }}^{2} } , $$
(B.8)
$$ \sigma_{{n,T_{zzz} }}^{2} = \frac{{G^{2} M^{2} }}{{R^{8} }}\left( {\frac{R}{r}} \right)^{2n + 8} \left[ {(n + 1)(n + 2)(n + 3)} \right]^{2} \sum\limits_{m} {\sigma_{{\bar{C}_{n,m} }}^{2} } . $$
(B.9)

In Eqs. (B.7)–(B.9), \( \sigma_{{\bar{C}_{n,m} }}^{{}} \) represent errors of the fully normalized geopotential coefficients.

Appendix C: Estimation of noise levels

In this appendix, we provide an insight how the standard deviation of the Gaussian noise applied in numerical experiments with noisy gradient data is derived. We consider the same analytical error model for differential accelerometry as was presented by Šprlák et al. (2016). We provide parameters of a hypothetic satellite mission similar to the GOCE mission in Table 7. The accelerometers’ power spectral densities (PSD) for measuring the first-, second- and third-order radial derivatives of the gravitational potential are defined as follows (Šprlák et al. 2016):

Table 7 Parameters of a hypothetic satellite mission (similar to the GOCE mission) used for generation of the Gaussian noise
$$ Q_{{a_{z} }} = \frac{2D}{\pi }\frac{{G^{2} M^{2} }}{{R^{4} }}\left( {\frac{R}{R + h}} \right)^{2n + 4} \left( {n + 1} \right)^{2} \frac{{10^{ - 10} }}{{n^{4} }}, $$
(C.1)
$$ Q_{{a_{z} }} = \frac{{\Delta z^{2} D}}{\pi }\frac{{G^{2} M^{2} }}{{R^{6} }}\left( {\frac{R}{R + h}} \right)^{2n + 6} \left[ {\left( {n + 1} \right)\left( {n + 2} \right)} \right]^{2} \frac{{10^{ - 10} }}{{n^{4} }}, $$
(C.2)
$$ Q_{{a_{z} }} = \frac{{\Delta z^{4} D}}{3\pi }\frac{{G^{2} M^{2} }}{{R^{8} }}\left( {\frac{R}{R + h}} \right)^{2n + 8} \left[ {\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)} \right]^{2} \frac{{10^{ - 10} }}{{n^{4} }}. $$
(C.3)

Equations (C.1), (C.2) and (C.3) yield the following values: \( \sqrt {Q_{{a_{z} }} } = 2.5 \times 10^{ - 8} \) m s−2 Hz−0.5, \( \sqrt {Q_{{a_{z} }} } = 4 \times 10^{ - 13} \) m s−2 Hz−0.5 and \( \sqrt {Q_{{a_{z} }} } = 5.3 \times 10^{ - 18} \) m s−2 Hz−0.5, respectively. We use PSD calculated from Eq. (C.1) in further calculations. This noise level is achievable by current sensors while the noise from Eqs. (C.2) and (C.3) is beyond current technological limits. The relation between the accelerometers’ accuracy and accelerometers’ PSD is defined as (Sneeuw 2000, Sect. 5.4):

$$ \sigma_{{a_{z} }}^{2} = \frac{{Q_{{a_{z} }} }}{\Delta t}. $$
(C.4)

The noise levels of the first-, second- and third-order radial derivatives of the gravitational potential are defined as (Šprlák et al. 2016):

$$ \sigma_{{V_{z} }}^{2} = \sigma_{{a_{z} }}^{2} , $$
(C.5)
$$ \sigma_{{V_{zz} }}^{2} \approx \frac{2}{{\Delta z^{2} }}\sigma_{{a_{z} }}^{2} , $$
(C.6)
$$ \sigma_{{V_{zzz} }}^{2} \approx \frac{6}{{\Delta z^{4} }}\sigma_{{a_{z} }}^{2} . $$
(C.7)

According to the parameters of the satellite mission defined in Table 7 and to the previous equations, the error degree-order variances of the first-, second- and third-order radial derivatives are \( \sigma_{{V_{z} }}^{2} = 6. 1 6\times 1 0^{ - 16} \;{\text{m}}^{2} \;{\text{s}}^{ - 2} \), \( \sigma_{{V_{zz} }}^{2} = 4. 7 4\times 1 0^{ - 32} \;{\text{s}}^{ - 2} \) and \( \sigma_{{V_{zzz} }}^{2} = 3.95 \times 1 0^{ - 33} \;{\text{m}}^{ - 2} \;{\text{s}}^{ - 2} \), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitoňák, M., Novák, P., Eshagh, M. et al. Downward continuation of gravitational field quantities to an irregular surface by spectral weighting. J Geod 94, 62 (2020). https://doi.org/10.1007/s00190-020-01384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01384-6

Keywords

Navigation