Skip to main content

Advertisement

Log in

Critical energy for direct initiation of detonation induced by laser ablation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This study describes experimental work examining the critical energy for direct initiation of detonation by laser ablation in a stoichiometric acetylene–oxygen mixture. The amount of input energy, the target material, and the surface roughness of the target were varied to study their effects on shock wave generation. Aluminum and stainless steel were used as target materials. The propagating shock wave induced by laser ablation was observed using high-speed shadow imaging. The critical energy for direct initiation of detonation was calculated using the strong blast wave theory. The critical input energy for aluminum was found to be lower than that for stainless steel. Because the thermodynamic critical temperature of aluminum is lower than that of stainless steel, aluminum caused a phase explosion more easily than stainless steel, thus resulting in direct initiation of detonation with a lower amount of input energy. The effects of surface roughness on critical input energy and shock wave generation were negligibly small. The critical initiation energy was estimated to be \(10.3 \pm 0.2\) mJ, which is in agreement with the experimental data obtained in previous work. The estimated critical initiation energy was independent of the target material. However, other predictions of the critical initiation energy by using the cell size overestimated this value because of the scatter in cell size data of an unstable cellular structure. Furthermore, interaction between plasma plumes formed by laser ablation and those formed by breakdown near the target surface might have contributed to requiring a lower amount of energy for initiating detonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bussing, T., Pappas, G.: An introduction to pulse detonation engines. AIAA Paper, 94-0263. (1994)

  2. Kindracki, J., Wolanski, P., Gut, Z.: Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves 21, 75–84 (2011)

    Article  Google Scholar 

  3. Bach, G.G., Knystautas, R., Lee, J.H.: Initiation criteria fir diverging gaseous detonations. In: Proceedings of the 13th Symposium on Combustion, pp. 1097–1110 (1971)

  4. Edwards, D.H., Hooper, G., Morgan, J.M., Thomas, G.O.: The quasi-steady regime in critically initiated detonation waves. J. Phys. D. Appl. Phys. 11, 2103–2117 (1978)

    Article  Google Scholar 

  5. Zhang, B., Ng, H.D., Lee, J.H.S.: Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations. Shock Waves 22, 275–279 (2012)

    Article  Google Scholar 

  6. Semerok, A., Chaléard, C., Detalle, V., Lacour, J.-L., Mauchien, P., Meynadier, P., Nouvellon, C., Sallé, B., Palianov, P., Perdrix, M., Petite, G.: Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Appl. Surf. Sci. 138–139, 311–314 (1999)

    Article  Google Scholar 

  7. Mori, K., Kusaka, K., Fujita, K., Niino, M.: Ignition characteristics of \({\rm GH}_{2}\)/\({\rm GO}_{x}\) mixture using laser ablation ignition. Trans. Jpn. Soc. Mech. Eng. 46, 121–126 (2003)

  8. Kataoka, H., Kato, H., Ishii, K.: Direct initiation of acetylene–oxygen mixture using laser ablation. In: Proceedings of the 22nd International Colloqium on the Dynamics of Explosions and Reactive Systems, Paper No. 198. Minsk, Belarus (2009)

  9. Kataoka, H., Kato, H., Suzuki, K., Ishihara, S., Ishii, K., Segawa, D.: Effects of target position on direct initiation of detonation using laser ablation. Trans. Jpn. Soc. Aero. Space. Sci. 58, 313–318 (2015)

    Article  Google Scholar 

  10. Taylor, G.: The formation of a blast wave by a very intense explosion. Proc. R. Soc. Lond. A. 201, 159–174 (1950)

    Article  MATH  Google Scholar 

  11. Yoh, J.J., Lee, H., Choi, J., Lee, K., Kim, K.: Ablation-induced explosion of metal using a high-power Nd:YAG laser. J. Appl. Phys. 103, 043511 (2008)

    Article  Google Scholar 

  12. Yoh, J.J., Gojani, A.B.: Metal and polymer melt jet formation by the high-power laser ablation. Appl. Surf. Sci. 256, 2423–2427 (2010)

    Article  Google Scholar 

  13. Jeong, S.H., Greif, R., Russo, R.E.: Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory. Appl. Surf. Sci. 127–129, 1029–1034 (1998)

    Article  Google Scholar 

  14. Jamieson, G.E., Wetsel, G.C., Jr.: Optical-beam-deflection probing of blast waves near solid surfaces. In: IEEE 1985 Ultrasonics Symposium, pp. 451–456 (1985)

  15. Mele, A., Guidoni, A.G., Kelly, R.: Laser ablation of metals: analysis of surface-heating and plume-expansion experiments. Appl. Surf. Sci. 109/110, 584–590 (1997)

    Article  Google Scholar 

  16. Bleiner, D., Chen, Z., Autrique, D., Bogaerts, A.: Role of laser-induced melting and vaporization of metals during ICP-MS and LIBS analysis, investigated with computer simulations and experiments. J. Anal. Atomic Spectrom. 21, 910–921 (2006)

    Article  Google Scholar 

  17. Ready, J.F.: Effects due to absorption of laser radiation. J. Appl. Phys. 36, 462–468 (1965)

    Article  Google Scholar 

  18. Gagliano, F.P., Lumley, R.M., Watkins, L.S.: Lasers in industry. Proc. IEEE 57, 114–147 (1969)

    Article  Google Scholar 

  19. Amer, E., Gren, P., Kaplan, A.F.H., Sjödahl, M., Shaer, M.E.: Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry. Appl. Surf. Sci. 256, 4633–4641 (2010)

    Article  Google Scholar 

  20. Kelly, R., Miotello, A.: Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci. 96–98, 205–215 (1996)

    Article  Google Scholar 

  21. Miotello, A., Kelly, R.: Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A. 69, S67–S73 (1999)

    Article  Google Scholar 

  22. Kelly, R., Miotello, A.: Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses. Phys. Rev. E. 60, 2616–2625 (1999)

    Article  Google Scholar 

  23. Martynyuk, M.M.: Critical constants of metals. Russ. J. Phys. Chem. 57, 494–501 (1983)

    Google Scholar 

  24. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)

    Google Scholar 

  25. Lee, J.H.S.: Initiation of Gaseous Detonation. Annu. Rev. Phys. Chem. 28, 75–104 (1977)

    Article  Google Scholar 

  26. Chase, M.W.: NIST-JANAF Thermochemical Tables, 4th edn. American Institute of Physics (1998)

  27. Kaneshige, M., Shepherd, J.E.: Detonation database. Technical report FM97-8, GALCIT (1997)

  28. Laberge, S., Knystautas, R., Lee, J.H.S.: Propagation and extinction of detonation waves in tube bundles. Prog. Astronaut. Aeronaut. 153, 381–396 (1993)

    Google Scholar 

  29. Strehlow, R.A.: Transverse waves in detonations: II. structure and spacing in \({\rm H}_{2}-{\rm O}_{2}, {\rm C}_{2}{\rm H}_{2}-{\rm O}_{2}, {\rm C}_{2}{\rm H}_{4}-{\rm O}_{2}\) and \({\rm CH}_{4}-{\rm O}_{2}\) systems. AIAA J. 7, 492–496 (1969)

  30. Knystautas, R., Lee, J.H., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combust. Flame 48, 63–83 (1982)

    Article  Google Scholar 

  31. Voitsekhovskii, B.V., Mitrofanov, V.V., Topchian, M.E.: The structure of a detonation front in gases. Technical report FTD-MT-64-527 (AD 633821), Wright-Patterson Air Force Base (1966)

  32. Denisov, Y.N., Troshin, Y.K.: Structure of gaseous detonation in tubes. Sov. Phys. Tech. Phys. 5, 419–431 (1960)

    Google Scholar 

  33. Desbordes, D.: Transmission of overdriven plane detonations: critical diameter as a function of cell regularity and size. Prog. Astronaut. Aeronaut. 114, 170–185 (1988)

    Google Scholar 

  34. Desbordes, D., Vachon, M.: Critical diameter of diffraction for strong plane detonations. Prog. Astronaut. Aeronaut. 106, 131–143 (1986)

    Google Scholar 

  35. Manzhalei, V.I., Mitrofanov, V.V., Subbotin, V.A.: Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust. Explos. Shock Waves 10, 89–95 (1974)

    Article  Google Scholar 

  36. Zel’dovich, IaB, Kogarko, S.M., Simonov, N.N.: An experimental investigation of spherical detonation of gases. Sov. Phys.-Tech. Phys. 1, 1689–1713 (1956)

    Google Scholar 

  37. Shchelkin, K.I., Troshin, Y.K: Gasdynamics of Combustion. Mono Book Corporation, Baltimore (1965)

  38. Zhang, B., Bai, C.: Critical energy of direct detonation initiation in gaseous fuel–oxygen mixtures. Saf. Sci. 53, 153–159 (2013)

  39. Zhang, B., Kamenskihs, V., Ng, H.D., Lee, J.H.S.: Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures. Proc. Combust. Inst. 33, 2265–2271 (2011)

  40. Brandes, E.A.: Smithells Metals Reference Book, 6th edn. Butterworth, London (1983)

    Google Scholar 

  41. Lide, D.R.: CRC Handbook of Chemistry and Physics, 73rd edn. CRC Press, Boca Raton, Florida (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ishihara.

Additional information

Communicated by Z. Jiang and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, S., Suzuki, K., Inoue, H. et al. Critical energy for direct initiation of detonation induced by laser ablation. Shock Waves 26, 635–643 (2016). https://doi.org/10.1007/s00193-015-0617-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0617-9

Keywords

Navigation