Skip to main content

Advertisement

Log in

Bone mineral density in Klinefelter syndrome is reduced and primarily determined by muscle strength and resorptive markers, but not directly by testosterone

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Klinefelter syndrome (KS) patients have lower bone mineral density (BMD) at the spine, hip and forearm compared to healthy subjects, but frank osteoporosis is not common. Muscle strength and bone markers predicted BMD but KS itself and serum testosterone did not. Low vitamin D and high PTH were frequent among KS.

Introduction

The long-term consequence of KS on bone health is not well described. The objective of this study is to investigate the regional BMD and its determinants in KS.

Methods

This is a cross-sectional study. BMD at the spine, hip and forearm are measured by DXA and correlated to biochemical markers of bone turnover, vitamin D metabolites, PTH, sex hormones, growth factors as well as muscle strength and anthropometric measures. The setting is at a university clinical research centre. The study involves 70 adult KS patients and 71 age-matched healthy subjects.

Results

In KS, BMD was universally lowered in all regions. Markers of bone formation or bone resorption were not altered in KS, but 25-OH-Dvitamin was lower (55 vs. 82 nmol/L, p < 0.0001) than in healthy subjects. Significantly more KS patients had low BMD (Z-scores below −2) at the forearm (15 KS vs. two healthy subjects, p = 0.001) but not at the spine or hip. Muscle strength (bicep and quadriceps) was lower among KS patients. Multivariate analysis revealed that muscle strength, treatment with testosterone (ever/never), age at diagnosis, SHBG, bone-specific alkaline phosphatase and 1CTP were all independent predictors of BMD, but androgens was not.

Conclusions

KS patients had lower BMD at the spine, hip and forearm compared to age-matched healthy subjects, but frank osteoporosis was not common. Muscle strength, previous history of testosterone treatment, age at diagnosis and bone markers were predictors of BMD, but testosterone was not. Signs of secondary hyperparathyroidism were present among KS. Dietary intake of vitamin D or sun exposure may be lower in KS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen J, Wohlert M (1990) Sex chromosome abnormalities found among 34, 910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Birth Defects Orig Artic Ser 26:209–223

    PubMed  CAS  Google Scholar 

  2. Bojesen A, Juul S, Gravholt CH (2003) Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab 88:622–626

    Article  PubMed  CAS  Google Scholar 

  3. Smyth CM, Bremner WJ (1998) Klinefelter syndrome. Arch Intern Med 158:1309–1314

    Article  PubMed  CAS  Google Scholar 

  4. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E (2004) Klinefelter's syndrome. Lancet 364:273–283

    Article  PubMed  CAS  Google Scholar 

  5. Bojesen A, Kristensen K, Birkebaek NH, Fedder J, Mosekilde L, Bennett P, Laurberg P, Frystyk J, Flyvbjerg A, Christiansen JS, Gravholt CH (2006) The metabolic syndrome is frequent in Klinefelter's syndrome and is associated with abdominal obesity and hypogonadism. Diab Care 29:1591–1598

    Article  Google Scholar 

  6. Luisetto G, Mastrogiacomo I, Bonanni G, Pozzan G, Botteon S, Tizian L, Galuppo P (1995) Bone mass and mineral metabolism in Klinefelter's syndrome. Osteoporos Int 5:455–461

    Article  PubMed  CAS  Google Scholar 

  7. Aksglaede L, Molgaard C, Skakkebaek NE, Juul A (2008) Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome. Arch Dis Child 93:30–34

    Article  PubMed  CAS  Google Scholar 

  8. Foresta C, Ruzza G, Mioni R, Meneghello A, Baccichetti C (1983) Testosterone and bone loss in Klinefelter syndrome. Horm Metab Res 15:56–57

    Article  PubMed  CAS  Google Scholar 

  9. Smith DA, Walker MS (1977) Changes in plasma steroids and bone density in Klinefelter's syndrome. Calcif Tissue Res 22 Suppl:225–228

    PubMed  CAS  Google Scholar 

  10. Horowitz M, Wishart JM, O'Loughlin PD, Morris HA, Need AG, Nordin BE (1992) Osteoporosis and Klinefelter's syndrome. Clin Endocrinol Oxf 36:113–118

    Article  PubMed  CAS  Google Scholar 

  11. Choi HR, Lim SK, Lee MS (1995) Site-specific effect of testosterone on bone mineral density in male hypogonadism. J Korean Med Sci 10:431–435

    PubMed  CAS  Google Scholar 

  12. Kubler A, Schulz G, Cordes U, Beyer J, Krause U (1992) The influence of testosterone substitution on bone mineral density in patients with Klinefelter's syndrome. Exp Clin Endocrinol 100:129–132

    Article  PubMed  CAS  Google Scholar 

  13. Devogelaer JP, De CS, de Nagant DC (1992) Low bone mass in hypogonadal males. Effect of testosterone substitution therapy, a densitometric study. Maturitas 15:17–23

    Article  PubMed  CAS  Google Scholar 

  14. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82:2386–2390

    Article  PubMed  CAS  Google Scholar 

  15. van den Bergh JP, Hermus AR, Spruyt AI, Sweep CG, Corstens FH, Smals AG (2001) Bone mineral density and quantitative ultrasound parameters in patients with Klinefelter's syndrome after long-term testosterone substitution. Osteoporos Int 12:55–62

    Article  PubMed  Google Scholar 

  16. Stepan JJ, Burckhardt P, Hana V (2003) The effects of three-month intravenous ibandronate on bone mineral density and bone remodeling in Klinefelter's syndrome: the influence of vitamin D deficiency and hormonal status. Bone 33:589–596

    Article  PubMed  CAS  Google Scholar 

  17. Bojesen A, Juul S, Birkebaek NH, Gravholt CH (2006) Morbidity in Klinefelter syndrome: A danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab 91:1254–1260

    Article  PubMed  CAS  Google Scholar 

  18. Swerdlow AJ, Higgins CD, Schoemaker MJ, Wright AF, Jacobs PA (2005) Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J Clin Endocrinol Metab 90:6516–6522

    Article  PubMed  CAS  Google Scholar 

  19. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    Article  PubMed  CAS  Google Scholar 

  20. Kim J, Heshka S, Gallagher D, Kotler DP, Mayer L, Albu J, Shen W, Freda PU, Heymsfield SB (2004) Intermuscular adipose tissue-free skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol 97:655–660

    Article  PubMed  Google Scholar 

  21. Lykkesfeldt G, Bennett P, Lykkesfeldt AE, Micic S, Moller S, Svenstrup B (1985) Abnormal androgen and oestrogen metabolism in men with steroid sulphatase deficiency and recessive X-linked ichthyosis. Clin Endocrinol Oxf 23:385–393

    Article  PubMed  CAS  Google Scholar 

  22. Bartsch W (1980) Interrelationships between sex hormone-binding globulin and testosterone, 5 alpha-dihydrotestosterone and oestradiol-17 beta in blood of normal men. Maturitas 2:109–118

    Article  PubMed  CAS  Google Scholar 

  23. Svenstrup B (1976) Radioimmunological determination of free estriol in serum during pregnancy. Ugeskr Laeger 138:1075–1077

    PubMed  CAS  Google Scholar 

  24. Frystyk J, Dinesen B, Orskov H (1995) Non-competitive time-resolved immunofluorometric assays for determination of human insulin-like growth factor I and II. Growth Regul 5:169–176

    PubMed  CAS  Google Scholar 

  25. Hanson DA, Weis MA, Bollen AM, Maslan SL, Singer FR, Eyre DR (1992) A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res 7:1251–1258

    Article  PubMed  CAS  Google Scholar 

  26. Gomez B Jr, Ardakani S, Ju J, Jenkins D, Cerelli MJ, Daniloff GY, Kung VT (1995) Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem 41:1560–1566

    PubMed  CAS  Google Scholar 

  27. Risteli J, Elomaa I, Niemi S, Novamo A, Risteli L (1993) Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem 39:635–640

    PubMed  CAS  Google Scholar 

  28. Risteli J, Niemi S, Trivedi P, Maentausta O, Mowat AP, Risteli L (1988) Rapid equilibrium radioimmunoassay for the amino-terminal propeptide of human type III procollagen. Clin Chem 34:715–718

    PubMed  CAS  Google Scholar 

  29. Melkko J, Kauppila S, Niemi S, Risteli L, Haukipuro K, Jukkola A, Risteli J (1996) Immunoassay for intact amino-terminal propeptide of human type I procollagen. Clin Chem 42:947–954

    PubMed  CAS  Google Scholar 

  30. Rosenquist C, Qvist P, Bjarnason N, Christiansen C (1995) Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin Chem 41:1439–1445

    PubMed  CAS  Google Scholar 

  31. Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem 51:1683–1690

    Article  PubMed  CAS  Google Scholar 

  32. Wong FH, Pun KK, Wang C (1993) Loss of bone mass in patients with Klinefelter's syndrome despite sufficient testosterone replacement. Osteoporos Int 3:3–7

    Article  PubMed  CAS  Google Scholar 

  33. Snyder PJ, Peachey H, Berlin JA, Hannoush P, Haddad G, Dlewati A, Santanna J, Loh L, Lenrow DA, Holmes JH, Kapoor SC, Atkinson LE, Strom BL (2000) Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab 85:2670–2677

    Article  PubMed  CAS  Google Scholar 

  34. Wang C, Cunningham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ, Weber T, Berman N, Hull L, Swerdloff RS (2004) Long-term testosterone gel (AndroGel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. J Clin Endocrinol Metab 89:2085–2098

    Article  PubMed  CAS  Google Scholar 

  35. Aminorroaya A, Kelleher S, Conway AJ, Ly LP, Handelsman DJ (2005) Adequacy of androgen replacement influences bone density response to testosterone in androgen-deficient men. Eur J Endocrinol 152:881–886

    Article  PubMed  CAS  Google Scholar 

  36. Guo B, Aslam F, van Wijnen AJ, Roberts SG, Frenkel B, Green MR, DeLuca H, Lian JB, Stein GS, Stein JL (1997) YY1 regulates vitamin D receptor/retinoid X receptor mediated transactivation of the vitamin D responsive osteocalcin gene. Proc Natl Acad Sci USA 94:121–126

    Article  PubMed  CAS  Google Scholar 

  37. Aksglaede L, Skakkebaek NE, Juul A (2008) Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47, XXY, 47, XYY, or sex-determining region of the Y chromosome (SRY)-positive 46, XX karyotypes. J Clin Endocrinol Metab 93:169–176

    Article  PubMed  CAS  Google Scholar 

  38. Khosla S, Melton LJ, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    Article  PubMed  CAS  Google Scholar 

  39. Khosla S, Melton LJ III, Atkinson EJ, O'Fallon WM (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561

    Article  PubMed  CAS  Google Scholar 

  40. Szulc P, Uusi-Rasi K, Claustrat B, Marchand F, Beck TJ, Delmas PD (2004) Role of sex steroids in the regulation of bone morphology in men. The MINOS study. Osteoporos Int 15:909–917

    Article  PubMed  CAS  Google Scholar 

  41. Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC (1989) Identification of androgen receptors in normal human osteoblast- like cells. Proc Natl Acad Sci USA 86:854–857

    Article  PubMed  CAS  Google Scholar 

  42. Mizuno Y, Hosoi T, Inoue S, Ikegami A, Kaneki M, Akedo Y, Nakamura T, Ouchi Y, Chang C, Orimo H (1994) Immunocytochemical identification of androgen receptor in mouse osteoclast-like multinucleated cells. Calcif Tissue Int 54:325–326

    Article  PubMed  CAS  Google Scholar 

  43. Gennari L, Nuti R, Bilezikian JP (2004) Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 89:5898–5907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Mogens Erlandsen, Institute of Biostatistics, Århus University for the valuable and inspiring statistical discussions and suggestions.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Gravholt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojesen, A., Birkebæk, N., Kristensen, K. et al. Bone mineral density in Klinefelter syndrome is reduced and primarily determined by muscle strength and resorptive markers, but not directly by testosterone. Osteoporos Int 22, 1441–1450 (2011). https://doi.org/10.1007/s00198-010-1354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1354-7

Keywords

Navigation