Skip to main content

Advertisement

Log in

PTH replacement therapy of hypoparathyroidism

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Hypoparathyroidism is characterized by hypocalcemia with inappropriately low parathyroid hormone (PTH) levels. Bone turnover is abnormally low and bone mineral density (BMD) is typically increased. Plasma calcium levels can be normalized by treatment with calcium supplements and vitamin D analogs, but bone turnover remains low and patients complain of a reduced quality of life (QoL). During recent years, a number of studies have shown that PTH replacement therapy (PTH-RT) may maintain calcium levels within the normal range, while the need for calcium and vitamin D supplements is reduced. In the initial response to subcutaneous PTH injections once or twice daily, bone turnover is overstimulated. BMD increases in cancellous bone, but decreases in cortical bone due to an increased porosity. Microcomputed tomography scans and histomorphometric studies on bone biopsies have shown changes similar to the well-known bone anabolic effects of PTH treatment in osteoporosis rather than a normalization of bone remodeling balancing the anabolic and catabolic effects of PTH. Most recently, continuous PTH delivery by pump was shown to increase the levels of bone markers into the normal range (without overstimulation of bone turnover) and with a normalization of renal calcium excretion. As PTH has a short plasma half-life, these findings indicate that exposure to PTH once or twice daily is not sufficient to reestablish a calcium homeostasis and bone metabolism that resembles normal physiology. Further studies should assess the effects of continuous PTH exposure by pump delivery (or multiple daily injections) on BMD and bone histology, as well as the effects of PTH-RT on indices of QoL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosato L, Avenia N, Bernante P, Palma M, Gulino G, Nasi PG, Pelizzo MR, Pezzullo L (2004) Complications of thyroid surgery: analysis of a multicentric study on 14,934 patients operated on in Italy over 5 years. World J Surg 28:271–276

    Article  PubMed  Google Scholar 

  2. Youngwirth L, Benavidez J, Sippel R, Chen H (2010) Parathyroid hormone deficiency after total thyroidectomy: incidence and time. J Surg Res 163:69–71

    Article  PubMed  CAS  Google Scholar 

  3. Bergenfelz A, Jansson S, Mårtensson H, Reihnér E, Wallin G, Kristoffersson A, Lausen I (2007) Scandinavian quality register for thyroid and parathyroid surgery: audit of surgery for primary hyperparathyroidism. Langenbecks Arch Surg 392:445–451

    Article  PubMed  Google Scholar 

  4. Mittendorf EA, Merlino JI, McHenry CR (2004) Post-parathyroidectomy hypocalcemia: incidence, risk factors, and management. Am Surg 70:114–119

    PubMed  Google Scholar 

  5. Bilezikian JP, Khan A, Potts JT, Brandi ML, Clarke BL, Shoback D, Juppner H, D’Amour P, D’Amour P, D’Amour P, Fox J, Rejnmark L, Rejnmark L, Mosekilde L, Rubin MR, Dempster D, Dempster D, Gafni R, Collins MT, Collins MT, Sliney J, Sanders J (2011) Hypoparathyroidism in the adult: epidemiology, diagnosis, pathophysiology, target organ involvement, treatment, and challenges for future research. J Bone Miner Res 26:2317–2337

    Article  PubMed  CAS  Google Scholar 

  6. Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG (1994) Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet 8:303–307

    Article  PubMed  CAS  Google Scholar 

  7. Baron J, Winer KK, Yanovski JA, Cunningham AW, Laue L, Zimmerman D, Cutler GB Jr (1996) Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum Mol Genet 5:601–606

    Article  PubMed  CAS  Google Scholar 

  8. Christensen SE, Nissen PH, Vestergaard P, Mosekilde L (2011) Familial hypocalciuric hypercalcaemia: a review. Curr Opin Endocrinol Diabetes Obes 18:359–370

    Google Scholar 

  9. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T (2002) Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360:692–694

    Article  PubMed  CAS  Google Scholar 

  10. Mundy GR, Guise TA (1999) Hormonal control of calcium homeostasis. Clin Chem 45:1347–1352

    PubMed  CAS  Google Scholar 

  11. Shoback D (2008) Hypoparathyroidism. N Engl J Med 359:391–403

    Article  PubMed  CAS  Google Scholar 

  12. Santos F, Smith MJV, Chan JCM (1986) Hypercalciuria associated with long-term administration of calcitriol (1,25-dihydroxyvitamin D3) action of hydrochlorothiazide. Am J Dis Child 140:139–142

    PubMed  CAS  Google Scholar 

  13. Sato K, Hasegawa Y, Nakae J, Nanao K, Takahashi I, Tajima T, Shinohara N, Fujieda K (2002) Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene. J Clin Endocrinol Metab 87:3068–3073

    Article  PubMed  CAS  Google Scholar 

  14. Uncini A, Tartaro A, Di SE, Gambi D (1985) Parkinsonism, basal ganglia calcification and epilepsy as late complications of postoperative hypoparathyroidism. J Neurol 232:109–111

    Article  PubMed  CAS  Google Scholar 

  15. Forman MB, Sandler MP, Danziger A, Kalk WJ (1980) Basal ganglia calcification in postoperative hypoparathyroidism. Clin Endocrinol (Oxf) 12:385–390

    Article  CAS  Google Scholar 

  16. Langdahl BL, Mortensen L, Vesterby A, Eriksen EF, Charles P (1996) Bone histomorphometry in hypoparathyroid patients treated with vitamin D. Bone 18:103–108

    Article  PubMed  CAS  Google Scholar 

  17. Rubin MR, Dempster DW, Kohler T, Stauber M, Zhou H, Shane E, Nickolas T, Stein E, Sliney J, Silverberg SJ, Bilezikian JP, Müller R (2010) Three dimensional cancellous bone structure in hypoparathyroidism. Bone 46:190–195

    Article  PubMed  Google Scholar 

  18. Compston J (2011) Pathophysiology of atypical femoral fractures and osteonecrosis of the jaw. Osteoporos Int 22:2951–2961

    Article  PubMed  CAS  Google Scholar 

  19. Subramanian G, Fritton J, Quek S (2012) Osteonecrosis and atypical fractures—common origins? Osteoporos Int. doi:10.1007/s00198‐012‐1953‐6

  20. Wang L, Manson JE, Song Y, Sesso HD (2010) Systematic review: vitamin D and calcium supplementation in prevention of cardiovascular events. Ann Intern Med 152:315–323

    Article  PubMed  Google Scholar 

  21. Zittermann A (2006) Vitamin D, and disease prevention with special reference to cardiovascular disease. Prog Biophys Mol Biol 92:39–48

    Article  PubMed  CAS  Google Scholar 

  22. Shoji T, Shinohara K, Kimoto E, Emoto M, Tahara H, Koyama H, Inaba M, Fukumoto S, Ishimura E, Miki T, Tabata T, Nishizawa Y (2004) Lower risk for cardiovascular mortality in oral 1{alpha}-hydroxy vitamin D3 users in a haemodialysis population. Nephrol Dial Transplant 19:179–184

    Article  PubMed  CAS  Google Scholar 

  23. Murray TM, Rao LG, Divieti P, Bringhurst FR (2005) Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl-terminal ligands. Endocr Rev 26:78–113

    Article  PubMed  CAS  Google Scholar 

  24. Gardella TJ, Jüppner H (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 12:210–217

    Google Scholar 

  25. Velasco PJ, Manshadi M, Breen K, Lippmann S (1999) Psychiatric aspects of parathyroid disease. Psychosomatics 40:486–490

    Article  PubMed  CAS  Google Scholar 

  26. Arlt W, Fremerey C, Callies F, Reincke M, Schneider P, Timmermann W, Allolio B (2002) Well-being, mood and calcium homeostasis in patients with hypoparathyroidism receiving standard treatment with calcium and vitamin D. Eur J Endocrinol 146:215–222

    Article  PubMed  CAS  Google Scholar 

  27. Winer KK, Yanovski JA, Cutler GB Jr (1996) Synthetic human parathyroid hormone 1–34 vs calcitriol and calcium in the treatment of hypoparathyroidism. JAMA 276:631–636

    Article  PubMed  CAS  Google Scholar 

  28. Winer KK, Yanovski JA, Sarani B, Cutler GB Jr (1998) A randomized, cross-over trial of once-daily versus twice-daily parathyroid hormone 1–34 in treatment of hypoparathyroidism. J Clin Endocrinol Metab 83:3480–3486

    Article  PubMed  CAS  Google Scholar 

  29. Winer KK, Ko CW, Reynolds JC, Dowdy K, Keil M, Peterson D, Gerber LH, McGarvey C, Cutler GB Jr (2003) Long-term treatment of hypoparathyroidism: a randomized controlled study comparing parathyroid hormone-(1–34) versus calcitriol and calcium. J Clin Endocrinol Metab 88:4214–4220

    Article  PubMed  CAS  Google Scholar 

  30. Winer KK, Sinaii N, Peterson D, Sainz B Jr, Cutler GB Jr (2008) Effects of once versus twice-daily parathyroid hormone1–34 therapy in children with hypoparathyroidism. J Clin Endocrinol Metab 93:3389–3395

    Google Scholar 

  31. Winer KK, Sinaii N, Reynolds J, Peterson D, Dowdy K, Cutler GB Jr (2010) Long-term treatment of 12 children with chronic hypoparathyroidism: a randomized trial comparing synthetic human parathyroid hormone 1–34 versus calcitriol and calcium. J Clin Endocrinol Metab 95:2680–2688

    Article  PubMed  CAS  Google Scholar 

  32. Winer KK, Zhang B, Shrader JA, Peterson D, Smith M, Albert PS, Cutler GB (2012) Synthetic human parathyroid hormone 1–34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J Clin Endocrinol Metab 97:391–399

    Article  PubMed  CAS  Google Scholar 

  33. Gafni RI, Brahim JS, Andreopoulou P, Bhattacharyya N, Kelly MH, Brillante BA, Reynolds JC, Zhou H, Dempster DW, Collins MT (2012) Daily parathyroid hormone 1–34 replacement therapy for hypoparathyroidism induces marked changes in bone turnover and structure. J Bone Miner Res 27:1811–1820

    Google Scholar 

  34. Rubin MR, Dempster DW, Sliney J, Zhou H, Nickolas TL, Stein EM, Dworakowski E, Dellabadia M, Ives R, McMahon DJ, Zhang C, Silverberg SJ, Shane E, Cremers S, Bilezikian JP (2011) PTH(1–84) administration reverses abnormal bone-remodeling dynamics and structure in hypoparathyroidism. J Bone Miner Res 26:2727–2736

    Google Scholar 

  35. Sikjaer T, Rejnmark L, Rolighed L, Heickendorff L, Mosekilde L, The Hypoparathyroid Study Group (2011) The effect of adding PTH (1–84) to conventional treatment of hypoparathyroidism—a randomized, placebo controlled study. J Bone Miner Res 26:2358–2370

    Article  PubMed  CAS  Google Scholar 

  36. Sikjaer T, Rejnmark L, Thomsen JS, Tietze A, Brüel A, Andersen G, Mosekilde L (2012) Changes in 3-dimensional bone structure indices in hypoparathyroid patients treated with PTH(1–84): a randomized controlled study. J Bone Miner Res 27:781–788

    Article  PubMed  CAS  Google Scholar 

  37. Rubin M, Sliney J, McMahon D, Silverberg S, Bilezikian J (2010) Therapy of hypoparathyroidism with intact parathyroid hormone. Osteoporos Int 21:1927–1934

    Google Scholar 

  38. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    Article  PubMed  CAS  Google Scholar 

  39. Jobke B, Muche B, Burghardt A, Semler J, Link T, Majumdar S (2011) Teriparatide in bisphosphonate-resistant osteoporosis: microarchitectural changes and clinical results after 6 and 18 months. Calcif Tissue Int 89:130–139

    Article  PubMed  CAS  Google Scholar 

  40. Jobke B, Pfeifer M, Minne HW (2009) Teriparatide following bisphosphonates: initial and long-term effects on microarchitecture and bone remodeling at the human iliac crest. Connect Tissue Res 50:46–54

    Article  PubMed  CAS  Google Scholar 

  41. Recker RR, Bare SP, Smith SY, Varela A, Miller MA, Morris SA, Fox J (2009) Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1–84. Bone 44:113–119

    Article  PubMed  CAS  Google Scholar 

  42. Cosman F, Schnitzer MB, McCann PD, Parisien MV, Dempster DW, Lindsay R (1992) Relationships between quantitative histological measurements and noninvasive assessments of bone mass. Bone 13:237–242

    Article  PubMed  CAS  Google Scholar 

  43. Nottestad SY, Baumel JJ, Kimmel DB, Recker RR, Heaney RP (1987) The proportion of trabecular bone in human vertebrae. J Bone Miner Res 2:221–229

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe A, Yoneyama S, Nakajima M, Sato N, Takao-Kawabata R, Isogai Y, Sakurai-Tanikawa A, Higuchi K, Shimoi A, Yamatoya H, Yoshida K, Kohira T (2012) Osteosarcoma in Sprague–Dawley rats after long-term treatment with teriparatide (human parathyroid hormone (1–34)). J Toxicol Sci 37:617–629

    Article  PubMed  CAS  Google Scholar 

  45. Jolette J, Wilker CE, Smith SY, Doyle N, Hardisty JF, Metcalfe AJ, Marriott TB, Fox J, Wells DS (2006) Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1–84 in a 2-year study in Fischer 344 rats. Toxicol Pathol 34:929–940

    Article  PubMed  CAS  Google Scholar 

  46. Karsdal MA, Qvist P, Christiansen C, Tankó LB (2006) Optimising antiresorptive therapies in postmenopausal women: why do we need to give due consideration to the degree of suppression? Drugs 66:1909–1918

  47. Sikjaer T, Rejnmark L, Mosekilde L (2011) PTH treatment in hypoparathyroidism. Curr Drug Saf 6:89–99

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

Leif Mosekilde is a principal investigator on the REPLACE study initiated by NPS Pharmaceuticals. All other authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rejnmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rejnmark, L., Sikjaer, T., Underbjerg, L. et al. PTH replacement therapy of hypoparathyroidism. Osteoporos Int 24, 1529–1536 (2013). https://doi.org/10.1007/s00198-012-2230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2230-4

Keywords

Navigation