Skip to main content
Log in

Transcriptional regulation and structural modeling of the FutC subunit of an ABC-type iron transporter in Synechocystis sp. strain PCC 6803

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The futC gene encodes a subunit of an ATP-binding cassette (ABC)-type iron transporter in Synechocystis sp. strain PCC 6803. In the present study, we have focused on the environmental regulation of futC transcription in the model organism Synechocystis sp. strain PCC 6803 and, moreover, studied the transcriptional regulation of the other transporter subunits, futA1, futA2 and futB. The steady-state amounts of the futA1, futA2, futB and futC transcripts were regulated under several conditions studied including darkness, temperature, alternative nitrogen source, salt and osmotic stresses and iron deficiency. Transcription of all subunits of the FutABC-iron transporter seems to be under similar regulation, which, according to our results, may also apply to genes encoding subunits of other transporters in Synechocystis. The sequence alignment, including sequences from six different organisms, revealed the conserved nature of FutC. Based on the sequence alignment and the structural model of FutC, the monomer consists of a nucleotide-binding domain (NBD) and a regulatory domain. The NBD is well conserved indicating completely functional ATP binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC-type transporter:

ATP-binding cassette transporter

OD730:

Optical density at 730 nm

References

  • Ambudkar SV, Kim IW, Xia D, Sauna ZE (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett 580:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Angerer A, Gaisser S, Braun V (1990) Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism. J Bacteriol 172:572–578

    PubMed  CAS  Google Scholar 

  • Badarau A, Firbank SJ, Waldron KJ, Yanagisawa S, Robinson NJ, Banfield MJ, Dennison C (2008) FutA2 is a ferric binding protein from Synechocystis PCC 6803. J Biol Chem 283:12520–12527

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian R, Shen G, Bryant DA, Golbeck JH (2006) Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 188:3182–3191

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2003) Structural determinants of metal specificity in the zinc transport protein ZnuA from Synechocystis 6803. J Mol Biol 333:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Bartsevich VV, Pakrasi HB (1996) Manganese transport in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 271:26057–26061

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145

    PubMed  CAS  Google Scholar 

  • Chen J, Lu G, Lin J, Davidson AL, Quiocho FA (2003) A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12:651–661

    Article  PubMed  CAS  Google Scholar 

  • Clarke TE, Tari LW, Vogel HJ (2001) Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1:7–30

    Article  PubMed  CAS  Google Scholar 

  • Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268

    Article  PubMed  CAS  Google Scholar 

  • deLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  • Groeger W, Koster W (1998) Transmembrane topology of the two FhuB domains representing the hydrophobic components of bacterial ABC transporters involved in the uptake of siderophores, haem and vitamin B12. Microbiology 144(Pt 10):2759–2769

    Article  PubMed  CAS  Google Scholar 

  • Herranen M, Aro EM, Tyystjarvi T (2001) Two distinct mechanisms regulate the transcription of photosystem II genes in Synechocystis sp. PCC 6803. Physiol Plant 112:531–539

    Article  PubMed  CAS  Google Scholar 

  • Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184:6845–6858

    Article  PubMed  CAS  Google Scholar 

  • Jantaro S, Kidron H, Chesnel D, Incharoensakdi A, Mulo P, Salminen T, Maenpaa P (2006) Structural modeling and environmental regulation of arginine decarboxylase in Synechocystis sp. PCC 6803. Arch Microbiol 184:397–406

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Grossman AR, Hagino N, Ogawa T (2000) A gene of Synechocystis sp. strain PCC 6803 encoding a novel iron transporter. J Bacteriol 182:6523–6524

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Hagino N, Grossman AR, Ogawa T (2001a) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:2779–2784

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Hagino N, Ogawa T (2001b) Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol 42:823–827

    Article  PubMed  CAS  Google Scholar 

  • Koropatkin N, Randich AM, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2007) The structure of the iron-binding protein, FutA1, from Synechocystis 6803. J Biol Chem 282:27468–27477

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lehtonen JV, Still DJ, Rantanen VV, Ekholm J, Bjorklund D, Iftikhar Z, Huhtala M, Repo S, Jussila A, Jaakkola J, Pentikainen O, Nyronen T, Salminen T, Gyllenberg M, Johnson MS (2004) BODIL: a molecular modeling environment for structure-function analysis and drug design. J Comput Aided Mol Des 18:401–419

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Ram G, Gast K, Chen X, Barasch K, Mori K, Schmidt-Ott K, Wang J, Kuo HC, Savage-Dunn C, Garrick MD, Barasch J (2004) Detection of intracellular iron by its regulatory effect. Am J Physiol Cell Physiol 287:1547–1559

    Article  CAS  Google Scholar 

  • Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 136:3290–3300

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Suzuki I (2006) Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot 57:235–247

    Article  PubMed  CAS  Google Scholar 

  • Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K, Maldener I, Muro-Pastor AM, Flores E, Schleiff E (2008) Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. J Bacteriol 190:7500–7507

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC (2007) Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics 8:476

    Article  PubMed  Google Scholar 

  • Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–521

    Article  PubMed  CAS  Google Scholar 

  • Palyada K, Threadgill D, Stintzi A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326

    Article  PubMed  CAS  Google Scholar 

  • Rukhman V, Anati R, Melamed-Frank M, Adir N (2005) The MntC crystal structure suggests that import of Mn2+ in cyanobacteria is redox controlled. J Mol Biol 348:961–969

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Sanders JD, Cope LD, Hansen EJ (1994) Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun 62:4515–4525

    PubMed  CAS  Google Scholar 

  • Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514

    Article  PubMed  CAS  Google Scholar 

  • Shcolnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Balasubramanian R, Wang T, Wu Y, Hoffart LM, Krebs C, Bryant DA, Golbeck JH (2007) SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. J Biol Chem 282:31909–31919

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839

    Article  PubMed  CAS  Google Scholar 

  • Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355:374–376

    Article  PubMed  CAS  Google Scholar 

  • Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40:235–244

    Article  PubMed  CAS  Google Scholar 

  • Suzuki I, Simon WJ, Slabas AR (2006) The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot 57:1573–1578

    Article  PubMed  CAS  Google Scholar 

  • Waldron KJ, Tottey S, Yanagisawa S, Dennison C, Robinson NJ (2007) A periplasmic iron-binding protein contributes toward inward copper supply. J Biol Chem 282:3837–3846

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Shen G, Balasubramanian R, McIntosh L, Bryant DA, Golbeck JH (2004) The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803 functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria. J Bacteriol 186:956–967

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM (2006) Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol 188:6515–6523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Mark Johnson for the excellent facilities provided at the Structural Bioinformatics Laboratory at the Department of Biochemistry and Pharmacy, Åbo Akademi University. This work was supported by the National Graduate School of Informational and Structural Biology, Magnus Ehrnrooth Foundation and Åbo Akademi Foundation to AMB, the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program, the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), and the Commission for Higher Education, Thailand (the university staff development consortium) to WR and AI, Tor, Joe and Pentti Borgs Memorial Fund and Sigrid Jusélius Foundation to TAS, the Academy of Finland to PMä (203352) and PMu (110099), and Centre for International Mobility, CIMO scholarship to WR and PMä.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirkko Mäenpää.

Additional information

Communicated by Mary M. Allen.

A. -M. Brandt, W. Raksajit, T. A. Salminen and P. Mäenpää contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, AM., Raksajit, W., Mulo, P. et al. Transcriptional regulation and structural modeling of the FutC subunit of an ABC-type iron transporter in Synechocystis sp. strain PCC 6803. Arch Microbiol 191, 561–570 (2009). https://doi.org/10.1007/s00203-009-0482-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0482-y

Keywords

Navigation