Skip to main content
Log in

Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Dragmacidon reticulatum is a marine sponge of wide occurrence in the Eastern and Western Atlantic. Little is known about D. reticulatum fungal diversity. Filamentous fungi recovered from D. reticulatum were assessed in the present study using a polyphasic taxonomic approach, including classical morphology, molecular biology and MALDI-TOF ICMS. Ninety-eight fungal strains were isolated from two D. reticulatum samples by using six different culture media, which were identified up to the genus level. Sixty-four distinct fungal ribotypes were obtained, distributed among twenty-four different genera belonging to the Ascomycota and Zygomycota. Representatives of Penicillium and Trichoderma were the most diverse and abundant fungi isolated. Amongst Penicillium spp. three isolates belonged to the same ribotype can be considered as a putative new species. Data derived from the present study highlight the importance of using a polyphasic approach to get an accurate identification in order to structure a reliable culture collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbanat D, Leighton M, Maiese W, Jones EBG, Pearce C, Greenstein M (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. J Antibiot 51:303–316

    Article  Google Scholar 

  • Alvarez B, van Soest RWM, Rützler K (1998) A Revision of Axinellidae (Porifera: Demospongiae) of the Central West Atlantic Region. Smithsonian Institution Press, Washington, DC, p 56

    Google Scholar 

  • Aly AH, Debbad A, Proksch P (2011) Fifty years of drug discovery from fungi. Fungal Divers 50:3–19

    Article  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Sette LD (2010a) Laccase activity and putative laccase genes in marine-derived basidiomycetes. Fungal Biol 114:863–872

    Article  PubMed  CAS  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Da Silva M, Sette LR (2010b) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzym Microbiol Technol 46:32–37

    Article  CAS  Google Scholar 

  • Borse BD (1985) Marine fungi from India-II. Curr Sci 54:881–882

    Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  PubMed  CAS  Google Scholar 

  • Chinnaraj S (1993) Higher marine fungi from mangroves of Andaman and Nicobar Islands. Sydowia 45:109–115

    Google Scholar 

  • Conceição DM, de Angelis DA, Bidoia ED, de Angelis DF (2005) Fungos filamentosos isolados do Rio Atibaia, SP e refinaria de petróleo biodegradadores de compostos fenólicos. Arq Inst Biol 72:99–106

    Google Scholar 

  • Da Silva IEC, Ludwig KVF, Neumann D, Schneider AC, Onofre SB (2007) Fungos filamentosos degradadores de compostos fenólicos isolados de águas residuárias de postos de combustíveis. Revista de Biologia e Saúde da UNISEP 1:101–108

    Google Scholar 

  • Da Silva M, Passarini MRZ, Bonugli RC, Sette LD (2008) Cnidarian-derived filamentous fungi from Brazil: isolation, characterization and RBBR decolourization screening. Environ Technol 29:1331–1339

    Article  PubMed  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12

    Article  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescit M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucl Acids Res 36:465–469

    Article  Google Scholar 

  • Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 12(10):8

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Figueira D, Barata M (2007) Marine fungi from two sandy beaches in Portugal. Mycologia 99:20–23

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microb 74:6091–6101

    Article  CAS  Google Scholar 

  • Gomes DNF, Cavalcanti MAQ, Fernandes MJS, Lim DMM, Passavante JZO (2008) Filamentous fungi isolated from sand and water of “Bairro Novo” and “Casa Caiada” beaches, Olinda, Pernambuco, Brazil. Braz J Biol 68:577–582

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Höller U, Wright AD, Matthee GF, König GM, Draeger S, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  • Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny pf Hypoxylon and closely related genera. Mycology 97:844–865

    Article  CAS  Google Scholar 

  • Jones GEB (2011) Fifty years of marine mycology. Fungal Divers 50:73–112

    Article  Google Scholar 

  • Jones EBG, Vrijmoed LLP (2003) Biodiversity of marine fungi in Hong Kong Coastal waters. Kowloon Tong, Hong Kong

    Google Scholar 

  • Ju YM, Rogers JD (1996) A revision of the genus Hypoxylon. Mycol Mem 20:1–365

    Google Scholar 

  • Kemptner J, Marchetti-Deschmann M, Mach R, Druzhinina IS, Kubicek CP, Allmaier G (2009) Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:877–884

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ko Ko TW, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120

    Article  Google Scholar 

  • Laundon JR (1967) A study of the lichen flora of London. The Lichenologist, vol 3. Cambridge University, England

    Google Scholar 

  • Lee S, Crous PW (2003) New species of Anthostomella on fynbos, with a key to the genus in South Africa. Mycol Res 107:360–370

    Article  PubMed  Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241

    Article  PubMed  CAS  Google Scholar 

  • Liu HB, Edrada-Ebel R, Ebel R, Wang Y, Schulz B, Draeger S, Müller W, Wray V, Lin WH, Proksch P (2011) Ophiobolin the sponge-derived fungus Aspergillus ustus. Helv Chim Acta 94:623–631

    Article  CAS  Google Scholar 

  • Maciá-Vicente JG, Jansson HB, Abdullah SK, Descals E, Salinas J, Lopez-Llorca LV (2008) Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol Ecol 64:90–105

    Article  PubMed  Google Scholar 

  • Menezes CBA, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 165:466–482

    Article  PubMed  Google Scholar 

  • Mizuno CM (2010) Estudos químicos e microbiológicos de microrganismos associados á esponja marinha Dragmacidpn reticulatum, objetivando o isolamento de metabólitos secundários bioativos. Dissertação

  • Muricy G, Hajdu E (2006) Porifera Brasilis: guia de identificação das esponjas mais comuns do Sudeste do Brasil. Série Livros 17, Museu Nacional, Rio de Janeiro

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26

    Article  Google Scholar 

  • Pei-Chih W, Huey-Jen S, Chia-Yin L (2000) Characteristics of indoor and outdoor airbome fungi at suburban and urban homes in two seasons. Sci Total Environ 253:111–118

    Article  PubMed  CAS  Google Scholar 

  • Pereira J, Rogers JD, Bezerra JL (2010) New Annulohypoxylon species from Brazil. Mycologia 102:248–252

    Article  PubMed  Google Scholar 

  • Pinnoi A, Lumyong S, Hyde KD, Jones EBG (2006) Biodiversity of fungi on the palm Eleiodoxa conferta in Sirindhorn peat swamp forest, Narathiwat, Thailand. Fungal Divers 22:205–218

    Google Scholar 

  • Pitt JI (1980) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic & Professional, London

  • Pitt JI, Kocking AD (1997) Fungi and food spoilage. Blackie Academic & Professional, London

  • Rani C, Panneerselvam A (2009) Diversity of lignicolous marine fungi recorded from muthupet environs, east coast of india. ARPN J Agric Biol Sci 4:1–6

    Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  PubMed  CAS  Google Scholar 

  • Reiswig HM (1971) Particle feeding in natural populations of 3 marine Demosponges. Biol Bull 141:568–591

    Article  Google Scholar 

  • Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N (2009) A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus Section Flavi isolated from Portuguese almonds. Int J Food Microbiol 129:187–193

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues P, Santos C, Venâncio A, Lima N (2011) Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF MS, and molecular approaches. J Appl Microbiol 111:877–892

    Article  PubMed  CAS  Google Scholar 

  • Roth FJ, Orpurt PA, Ahearn DJ (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383

    Article  Google Scholar 

  • Rukachaisirikul V, Khamthong N, Sukpondma Y, Pakawatchai C, Phongpaichit S, Sakayaroj J, Kirtikara K (2009) An [11] cytochalasin derivative from the marine-derived fungus Xylaria sp. PSU F100. Chem Pharm Bull 57:1409–1411

    Article  PubMed  CAS  Google Scholar 

  • Salomon CE, Magarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  PubMed  CAS  Google Scholar 

  • Samuels GJ, Chaverri P, Farr DF, McCray EB (2012) Trichoderma online, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved 10 Jan. From/taxadescriptions/keys/TrichodermaIndex.cfm

  • Santos C, Paterson RMR, Venâncio A, Lima N (2010a) Filamentous fungal characterisations by matrix-assisted laser desorption/ionisation time of flight mass spectrometry. J App Microbiol 108:375–385

    Article  CAS  Google Scholar 

  • Santos C, Fraga ME, Kozakiewicz Z, Lima N (2010b) Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res Microbiol 161:168–175

    Article  PubMed  CAS  Google Scholar 

  • Sarma VV, Vittal BPR (2001) Biodiversity of manglicolous fungi on selected plants in the Godavari and Krishna deltas, east coast of India. Fungal Divers 6:115–130

    Google Scholar 

  • Schlingmann G, Milne L, Carter GT (2002) Isolation and identification of antifungal polyester from the marine fungus Hypoxylon oceanicum LL-15G256. Tetrahedron 58:6825–6835

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Sette LD, Oliveira VM, Manfio GP (2005) Isolation and characterization of alachlor degrading actinomycetes from soil. Antonie Van Leeuwenhoek Int J 87:81–89

    Article  CAS  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40:89–102

    Article  Google Scholar 

  • Siqueira V, Lima N (2012) Surface hydrophobicity of culture and water biofilm of Penicillium spp. Curr Microbiol 64:93–99

    Article  PubMed  CAS  Google Scholar 

  • Siqueira VM, Oliveira HMB, Santos C, Paterson RRM, Gusmão NB, Lima N (2011) Filamentous fungi in drinking water, particularly in relation to biofilm formation. Int J Environ Res Public Health 8:456–469

    Article  PubMed  CAS  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5—molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  PubMed  CAS  Google Scholar 

  • Vacelet J (1975) Electron microscope study of the association between bacteria and sponges of the genus Verongia (Dictyoceratida). J Exp Marine Biol Ecol 23:271–288

    Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater Ascomycetes. Fungal Divers 23:351–390

    Google Scholar 

  • Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

M. Passarini was supported by Ph.D. grant from FAPESP (2008/06720-7), São Paulo, Brazil. Part of the research leading to MALDI-TOF ICMS results received funding from the European Community’s Seventh Framework Program (FP7, 2007–2013), Research Infrastructures Action, under grant agreement no. FP7-228310 (EMbaRC project). L.D. Sette and R.G.S. Berlinck thank FAPESP for financial support (BIOTA-FAPESP grant 2010/50190-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel R. Z. Passarini.

Additional information

Communicated by Olaf Kniemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passarini, M.R.Z., Santos, C., Lima, N. et al. Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum . Arch Microbiol 195, 99–111 (2013). https://doi.org/10.1007/s00203-012-0854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0854-6

Keywords

Navigation