Skip to main content
Log in

Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus subtilis is a wealth source of lipopeptide molecules such as iturins, surfactins and fengycins or plipastatins endowed with a range of biological activities. These molecules, designated secondary metabolites, are synthesized via non-ribosomal peptides synthesis (NRPS) machinery and are most often subjected to a complex regulation with involvement of several regulatory factors. To gain novel insights on mechanism regulating fengycin production, we investigated the effect of the fascinating polynucleotide phosphorylase (PNPase), as well as the effect of lipopeptide surfactin. Compared to the wild type, the production of fengycin in the mutant strains B. subtilis BBG235 and BBG236 altered for PNPase has not only decreased to about 70 and 40%, respectively, but also hampered its antifungal activity towards the plant pathogen Botrytis cinerea. On the other hand, mutant strains BBG231 (srfAA) and BBG232 (srfAC) displayed different levels of fengycin production. BBG231 had registered an important decrease in fengycin production, comparable to that observed for BBG235 or BBG236. This study permitted to establish that the products of pnpA gene (PNPase), and srfAA (surfactin synthetase) are involved in fengycin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[adapted from Schultz et al. 2009; Jacques 2011]

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allenby NE, O’Connor N, Prágai Z, Ward AC, Wipat A, Harwood CR (2005) Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J Bacteriol 187:8063–8080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Béchet M, Castéra-Guy J, Guez JS, Chihib NE, Coucheney F, Coutte F, Leclère V, Wathelet B, Jacques P (2013) Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour Technol 145:264–270

    Article  PubMed  CAS  Google Scholar 

  • Beltramo C, Desroche N, Tourdot-Maréchal R, Grandvalet C, Guzzo J (2006) Real-time PCR for characterizing the stress response of Oenococcus oeni in a wine-like medium. Res Microbiol 157:267–274

    Article  PubMed  CAS  Google Scholar 

  • Briani F, Carzaniga T, Deho G (2016) Regulations and functions of bacterial PNPase. Wiley Interdiscip Rev RNA 7:241–258

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Zhang X, Zhong L, Lu Z (2011) A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotechnol Lett 33:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Cardenas P, Carrasco B, Sanchez H, Deikus G, Bechhofer H, Alonso JC (2009) Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair. Nucleic Acids Res 37(12):4157–4169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L (2016) Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek 109:1375–1388

    Article  PubMed  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmater A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnol 25:1007–1014

    Article  CAS  Google Scholar 

  • Cheng W, Feng YQ, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63:215–222

    PubMed  CAS  Google Scholar 

  • Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik-Habrink M et al (2009) Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. MolCell Proteom 8:1350–1360

    Article  CAS  Google Scholar 

  • Coutte F, Lecouturier D, Yahia SA, Leclère V, Béchet M, Jacques P, Dhulster P (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507

    Article  PubMed  CAS  Google Scholar 

  • Dhali D (2016) Correlation between lipopeptides biosynthesis and their precursor metabolism in Bacillus subtilis. PhD Thesis, Lille1 University, France

  • Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490–3496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fahim S, Dimitrov K, Gancel F, Vauchel P, Jacques P, Nikov I (2012) Impact of energy supply and oxygen transfer on selective lipopeptide production by Bacillus subtilis BBG21. Bioresour Technol 126:1–6

    Article  PubMed  CAS  Google Scholar 

  • Galli G, Rodriguez F, Cosmina P, Pratesi C, Nogarotto R, de Ferra F, Grandi G (1994) Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1205:19–28

    Article  CAS  Google Scholar 

  • Gamba P, Jonker MJ, Hamoen LW (2015) A novel feedback loop that controls bimodal expression of genetic competence. PLoS Genet 11:e1005047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamoen W, Eshuis H, Jongbloed J, Venema G, Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15:55–63

    Article  PubMed  CAS  Google Scholar 

  • Hussein W (2011) Study on the regulation and biosynthesis of fengycin and plipastatin produced by Bacillus subtilis. PhD Thesis, Lille1 University, France

  • Iatsenko I, Yim JJ, Schroeder FC, Sommer RJ (2014) B. subtilis GS67 protects C. elegans from Gram-positive pathogens via fengycin-mediated microbial antagonism. Curr Biol 24:2720–2727

    Article  PubMed  CAS  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberon-Chavez G (ed) Biosurfactants microbiology monographs, vol 20. Springer, Berlin, pp 57–91

    Google Scholar 

  • Kakiuchi N, Fukui T, Ikehara M (1979) Polynucleotides. LVII. Synthesis and properties of poly (2′chloro-2′-deoxyinosinic acid). Nucleic Acid Res 6:2627–2636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karatas Y, Çetin S, Özcengiz G (2003) The effects of insertional mutations in comQ, comP. srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim Biophys Acta (BBA) Gene Struct Express 1626:51–56

    Article  CAS  Google Scholar 

  • Kim I, Ryu J, Kim H, ChI YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    PubMed  CAS  Google Scholar 

  • Landy M, Warren GH, Rosenman SB, Colio LG (1948) Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:530–541

    Article  Google Scholar 

  • Lee K, Yoon D, Yoon H, Lee G, Song J, Kim G, Kim S (2007) Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli. Appl Microbiol Biotechnol 7:567–572

    Article  CAS  Google Scholar 

  • Liu L, Nakano M, Lee H, Zuber P (1996) Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 178:5144–5152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Deikus G, Bree A, Durand S, Kearns B, Bechhofer DH (2014) Global analysis of mRNA decay intermediates in Bacillus subtilis wild-type and polynucleotide phosphorylase-deletion strains. Mol Microbiol 94:41–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Daniel B, David H (2016) Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3′ ends. Nucleic Acids Res 44(7):3364–3372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19:343–356

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Zuber P (1991) The primary role of ComA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J Bacteriol 173:7269–7274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T (2002) Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184:2344–2351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny L, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2004) Quantification strategies in real-time polymerase chain reaction. In: Bustin SA (ed) A–Z of quantitative PCR, IUL biotechnology Series. International University Lines, La Jolla, pp 87–120

    Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506

    Article  PubMed  CAS  Google Scholar 

  • Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. IntJ Mol Sci 12:141–172

    Article  CAS  Google Scholar 

  • Salvo E, Alabi S, Liu B, Schlessinger A, Bechhofer DH (2016) Interaction of Bacillus subtilis polynucleotide phosphorylase and RNase Y: structural mapping and effect on mRNA turnover. J Biol Chem 291(13):6655–6663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001). Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schultz D, Wolynes G, Jacob B, Onuchic N (2009) Deciding fate in adverse times: sporulation and competence in Bacillus subtilis. Proc Natl Acad Sci (USA) 106:21027–21034

    Article  Google Scholar 

  • Sinchaikul S, Sookkheo B, Topanuruk S, Juan HF, Phutrakul S, Chen ST (2002) Bioinformatics, functional genomics, and proteomics study of Bacillus sp. J Chromatog B 771:261–287

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  • Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Bie X, Lu Z, Lv F, Tao Y, Qu X (2014) Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol 52:675–680

    Article  PubMed  CAS  Google Scholar 

  • Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ. pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yaseen Y, Gancel F, Drider D, Béchet M, Jacques P (2016) Influence of promoters on the production of fengycin in Bacillus spp. Res Microbiol 176:272–281

    Article  CAS  Google Scholar 

  • Zeriouh H, Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16:2196–2211

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhang C, Lu J, Lu Z (2016) Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Can J Microbiol 62:431–436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

YY was a recipient of PhD scholarship awarded by Campus France through joint French-Iraqi governments program. The authors express their gratitude for “Région des Hauts-de-France” for CPER-FEDER Alibiotech project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Drider.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest for this article.

Additional information

Communicated by Djamel DRIDER.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, Y., Diop, A., Gancel, F. et al. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Arch Microbiol 200, 783–791 (2018). https://doi.org/10.1007/s00203-018-1483-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1483-5

Keywords

Navigation