Skip to main content
Log in

On Stationary Solutions of Two-Dimensional Euler Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the geometry of streamlines and stability properties for steady state solutions of the Euler equations for an ideal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac S., Métivier G.: Propagation de l’analyticité locale pour les solutions de léquation dEuler. Arch. Rational Mech. Anal. 92, 287–296 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Alpern S., Prasad V.S.: Typical Dynamics of Volume Preserving Homeomorphisms. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Arnold V.: Sur la géométrie differentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  Google Scholar 

  4. Arnold V.I.: On an apriori estimate in the theory of hydrodynamical stability. Am. Math. Soc. Transl. 19, 267–269 (1969)

    Google Scholar 

  5. Arnold V.I., Khesin B.A.: Topological Methods in Hydrodynamics. Springer, Berlin (1998)

    MATH  Google Scholar 

  6. Bardos C., Benachour S., Zerner M.: Analyticité des solutions périodiques de l’équation d’Euler en deux dimensions. C. R. Acad. Sci. Paris Sér. A-B 282(17), 995–998 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Bernshtein S.: Démonstration du théorème de M. Hilbert sur la nature analytique des solutions des équations du type elliptique sans l’emploi des séries normales. Math. Zeitschrift 28, 330–348 (1928)

    Article  Google Scholar 

  8. Burton G.R.: Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré 6, 295–319 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Burton G.R.: Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex. Acta Math. 163, 291–309 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabré X., Chanillo S.: Stable solutions of semilinear elliptic problems in convex domains. Selecta Math. (N.S.) 4, 1–10 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chemin J-Y.: Perfect Incompressible Fluids. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  12. Ebin D., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  14. Günter, N.M.: Potential Theory and its Application to Basic Problems of Mathematical Physics. Frederick Ungar Publishing Co., New York, 1967

  15. Hamel, F., Nadirashvili, N., Sire, Y.: Convexity of level sets for elliptic problems in convex domains or convex rings: two counterexamples. Preprint arXiv: 1304.3355 (2013)

    Google Scholar 

  16. Hoffmann-Ostenhof M., Hoffman-Ostenhof T.: Local properties of solutions of Schrodinger equations. Commun. PDE 17, 491–522 (1992)

    Article  MATH  Google Scholar 

  17. Hoffmann-Ostenhof M., Hoffman-Ostenhof T., Nadirashvili N.: Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets. Commun. PDE 20, 1241–1273 (1995)

    Article  MATH  Google Scholar 

  18. Hörmander L.: Linear Partial Differential Operators. Springer, New York (1963)

    Book  MATH  Google Scholar 

  19. Hörmander L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  20. Hughes T.J.R., Kato T., Marsden J.E.: Well-posed Quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63, 273–294 (1976)

    MathSciNet  Google Scholar 

  21. Kamynin L.I.: The smoothness of heat potentials, part 5. Differ Equat. 4, 185–195 (1968)

    Google Scholar 

  22. Lewy, H.: Über den analytischen Charakter der Lösungen elliptischer Diffe- rentialgleichungen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. KL, 178–186 (1927)

  23. Lichtenstein L.: Über einige Hilfssätze der Potentialtheorie. Math. Zeitschrift 23, 72–78 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. v.1. Incompressible Models. Claredon Press, Oxford, 1996

  25. Milnor, J.: Remarks on infinite-dimensional Lie groups. Proceedings Summer School on Quantum Gravity, Held in Amsterdam, pp. 1007–1057, 1984

  26. Miranda C.: Partial Differential Equations of Elliptic Type, 2nd edn. Springer, New York (1970)

    Book  MATH  Google Scholar 

  27. Petrowsky I.G.: Sur l’analyticité des solutions des systèmes d’équations diffrentielles. Mat. Sbornik 5(47), 3–70 (1939)

    MathSciNet  Google Scholar 

  28. Wiegner M.: Schauder estimates for boundary layer potentials. Math. Methods Appl. Sci. 16, 877–894 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Yudovich V.I.: Non-stationary flow of an ideal incompressible liquid. Zhurn. Vych. Mat. 3, 1032–1066 (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Nadirashvili.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadirashvili, N. On Stationary Solutions of Two-Dimensional Euler Equation. Arch Rational Mech Anal 209, 729–745 (2013). https://doi.org/10.1007/s00205-013-0642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0642-8

Keywords

Navigation