Skip to main content
Log in

A Nonlocal Biharmonic Operator and its Connection with the Classical Analogue

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a singular integral operator as a natural generalization to the biharmonic operator that arises in thin plate theory. The operator is built in the nonlocal calculus framework defined in (Math Models Methods Appl Sci 23(03):493–540, 2013) and connects with the recent theory of peridynamics. This framework enables us to consider non-smooth approximations to fourth-order elliptic boundary-value problems. For these systems we introduce nonlocal formulations of the clamped and hinged boundary conditions that are well-defined even for irregular domains. We demonstrate the existence and uniqueness of solutions to these nonlocal problems and demonstrate their L 2-strong convergence to functions in W 2,2 as the nonlocal interaction horizon goes to zero. For regular domains we identify these limits as the weak solutions of the corresponding classical elliptic boundary-value problems. As a part of our proof we also establish that the nonlocal Laplacian of a smooth function is Lipschitz continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Academic Press 2003

  2. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. doi:10.1090/surv/165. http://0-dx.doi.org.library.unl.edu/10.1090/surv/165

  3. Bourgain, J., Brezis, H., Mironescu, P.: Another look at sobolev spaces. In: Optimal Control and Partial Differential Equations, pp. 439–455, 2001

  4. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maî trise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris. Théorie et applications. [Theory and applications], 1983

  5. Carrillo, C., Fife, P.: Spatial effects in discrete generation population models. Journal of Mathematical Biology 50(2), 161–188 (2005). doi:10.1007/s00285-004-0284-4. http://dx.doi.org/10.1007/s00285-004-0284-4

  6. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences 23(03), 493–540 (2013). doi:10.1142/S0218202512500546. http://www.worldscientific.com/doi/abs/10.1142/S0218202512500546

  7. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992

  8. Foss, M., Radu, P.: Differentiability and integrability properties for solutions to nonlocal equations. In: New Trends in Differential Equations, Control Theory and Optimization: Proceedings of the 8th Congress of Romanian Mathematicians, p. 105. World Scientific, 2016

  9. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Modeling & Simulation 7(3), 1005–1028 (2009). doi:10.1137/070698592. http://epubs.siam.org/doi/abs/10.1137/070698592

  10. Grisvard, P.: Elliptic problems in nonsmooth domains, vol. 24. Pitman, Advanced Publishing Program, 1985

  11. Hajłasz, P.: Change of variables formula under minimal assumptions. Colloq. Math. 64(1), 93–101 (1993)

  12. Han, J.: The Cauchy problem and steady state solutions for a nonlocal Cahn-Hilliard equation. Electron. J. Differential Equations(electronic) 113 (2004)

  13. Hinds, B., Radu, P.: Dirichlet’s principle and wellposedness of solutions for a nonlocal p-Laplacian system. Appl. Math. Comput. 219(4), 1411–1419 (2012). doi:10.1016/j.amc.2012.07.045. http://0-dx.doi.org.library.unl.edu/10.1016/j.amc.2012.07.045

  14. Ignat, L.I., Ignat, T.I., Stancu-Dumitru, D.: A compactness tool for the analysis of nonlocal evolution equations. SIAM J. Math. Anal. 47(2), 1330–1354 (2015). doi:10.1137/130921349. http://0-dx.doi.org.library.unl.edu/10.1137/130921349

  15. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories. I, Encyclopedia of Mathematics and its Applications, vol. 74. Cambridge University Press, Cambridge, 2000. Abstract parabolic systems

  16. Lipton, R.: Cohesive dynamics and brittle fracture. Journal of Elasticity 124(2), 143–191 (2016). doi:10.1007/s10659-015-9564-z.

  17. Mengesha, T., Du, Q.: The bond-based peridynamic system with Dirichlet-type volume constraint. Proc. Roy. Soc. Edinburgh Sect. A 144(1), 161–186 (2014). doi:10.1017/S0308210512001436. http://0-dx.doi.org.library.unl.edu/10.1017/S0308210512001436

  18. Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. Journal of Mathematical Biology 38(6), 534–570 (1999). doi:10.1007/s002850050158.

  19. Nishiura, Y., Ohnishi, I.: Some mathematical aspects of the micro-phase separation in diblock copolymers. Phys. D 84(1-2), 31–39 (1995). doi:10.1016/0167-2789(95)00005-O. http://0-dx.doi.org.library.unl.edu/10.1016/0167-2789(95)00005-O

  20. O’Grady, J., Foster, J.: Peridynamic beams: A non-ordinary, state-based model. International Journal of Solids and Structures 51(18), 3177–3183 (2014). doi:10.1016/j.ijsolstr.2014.05.014. http://www.sciencedirect.com/science/article/pii/S002076831400208X

  21. O’Grady, J., Foster, J.: Peridynamic plates and flat shells: A non-ordinary, state-based model. International Journal of Solids and Structures 51(25–26), 4572 – 4579 (2014). doi:10.1016/j.ijsolstr.2014.09.003. http://www.sciencedirect.com/science/article/pii/S0020768314003448

  22. Ponce, A.C.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. (JEMS) 6(1), 1–15 (2004). http://0-link.springer.de.library.unl.edu/cgi/linkref?issn=1435-9855&year=04&volume=6&page=1

  23. Selvadurai, A.P.S.: Partial differential equations in mechanics. 2. The biharmonic equation, Poisson’s equation. Springer, Berlin, 2000

  24. Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 48, 175–209 (2000). doi:10.1016/S0022-5096(99)00029-0

  25. Silling, S.A.: Linearized theory of peridynamic states. J. Elasticity 99(1), 85–111 (2010). doi:10.1007/s10659-009-9234-0. http://0-dx.doi.org.library.unl.edu/10.1007/s10659-009-9234-0

  26. Yao, P.F.: Modeling and control in vibrational and structural dynamics. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series A differential geometric approach. CRC Press, Boca Raton, FL, 2011. doi:10.1201/b11042. http://0-dx.doi.org.library.unl.edu/10.1201/b11042.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Trageser.

Additional information

Communicated by D. Kinderlehrer

The research of the first author was partially supported by the National Science Foundation under Grant DMS-0908435.

The research of second author was partially supported by the National Science Foundation under Grant DMS-1211232.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radu, P., Toundykov, D. & Trageser, J. A Nonlocal Biharmonic Operator and its Connection with the Classical Analogue. Arch Rational Mech Anal 223, 845–880 (2017). https://doi.org/10.1007/s00205-016-1047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1047-2

Navigation