Skip to main content
Log in

Morse Theory and Relative Equilibria in the Planar n-Vortex Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Morse theoretical ideas are applied to the study of relative equilibria in the planar n-vortex problem. For the case of positive circulations, we prove that the Morse index of a critical point of the Hamiltonian restricted to a level surface of the angular impulse is equal to the number of pairs of real eigenvalues of the corresponding relative equilibrium periodic solution. The Morse inequalities are then used to prove the instability of some families of relative equilibria in the four-vortex problem with two pairs of equal vorticities. We also show that, for positive circulations, relative equilibria cannot accumulate on the collision set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albouy, A.: The symmetric central configurations of four equal masses, in Hamiltonian Dynamics and Celestial Mechanics, Seattle, WA, 1995, Contemp. Math. 198, Amer. Math. Soc., Providence, 131–135 1996

  2. Aref H., Newton P. K., Stremler M. A., Tokieda T., Vainchtein D. L.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003)

    Article  Google Scholar 

  3. Barutello V. L., Jadanza R. D., Portaluri A.: Linear instability of relative equilibria for n-body problems in the plane. J. Differential Equations 257, 1773–1813 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Barutello V., Jadanza R. D., Portaluri A.: Morse index and linear stability of the Lagrangian circular orbit in a three-body-type problem via index theory. Arch. Rational Mech. Anal. 219, 387–444 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chenciner A., Montgomery R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. of Math. 152, 881–901 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox D. A., Little J. B., O’Shea D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  8. Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaria, M., Dudhia, J., Holland, G., Klemp, J., Michalakes, J., Reeves, H., Rotunno, R., Snyder, C., Xiao, Q.: Prediction of Landfalling Hurricanes with the Advanced Hurricane WRF Model, Monthly Weather Review 136, 1990–2005 2007

  9. Dziobek O.: Über einen merkwürdigen Fall des Vielkörperproblems. Astro. Nach. 152, 32–46 (1900)

    Article  ADS  Google Scholar 

  10. Hampton M., Roberts G. E., Santoprete M.: Relative equilibria in the four-vortex problem with two pairs of equal vorticities. J. Nonlinear Sci 24, 39–92 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kirchhoff, G.: Vorlesungen über Mathematische Physik, I, Teubner, Leipzig, 1876

  12. Kossin J. P., Schubert W. H.: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci. 58, 2196–2209 (2001)

    Article  ADS  Google Scholar 

  13. Long, Y.: Index Theory for Symplectic Paths with Applications, Progress in Mathematics, vol. 207, Birkhäuser, Basel 2002

  14. Maple, version 15.00, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, Canada 2011

  15. MATLAB, version R2016b (9.1.0.441655), (2016), The MathWorks, Inc., Natick, Massachusetts, United States

  16. Menezes, B., Roberts, G. E.: Existence and stability of four-vortex collinear relative equilibria with three equal vorticities, preprint

  17. Meyer, C. D.: Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia 2000

  18. Meyer, K., Schmidt, D.: Bifurcations of relative equilibria in the n-body and Kirchhoff problems, SIAM J. Math. Anal. 19, no. 6, 1295–1313 1988

  19. Moeckel, R., Central configurations, in Llibre, J., Moeckel, R., Simó, C.: Central Configurations, Periodic Orbits, and Hamiltonian Systems, Adv. Courses Math. CRM Barcelona, pp. 105–167, Birkhäuser/Springer, Basel 2015

  20. Navarro R., Carretero-Gonzalez R., Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Ray M. W., Altuntas E., Hall D. S.: Dynamics of a few corotating vortices in Bose-Einstein condensates. Phys. Rev. Lett. 110, 225301 (2013)

    Article  ADS  Google Scholar 

  21. Newton P. K.: The N-Vortex Problem: Analytic Techniques. Springer, New York (2001)

    Book  MATH  Google Scholar 

  22. O’Neil, K. A.: Stationary configurations of point vortices, Trans. Amer. Math. Soc. 302, no. 2, 383–425 1987

  23. Pacella F.: Central configurations of the N-body problem via equivariant Morse theory. Arch. Rational Mech. Anal. 97, 59–74 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Palmore, J.: Central configurations, CW-complexes and the homology of projective spaces, Classical mechanics and dynamical systems (Medford, Mass., 1979), Lecture Notes in Pure and Appl. Math. 70, pp. 225–237, Dekker, New York 1981

  25. Palmore J.: Classifying relative equilibria, I. Bull. Amer. Math. Soc. 79, 904–908 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Palmore, J.: Collinear relative equilibria of the planar n-body problem, Celestial Mech. 28, no. 1–2, 17–24 1982

  27. Palmore, J.: Relative equilibria of vortices in two dimensions, Proc. Natl. Acad. Sci. USA 79, 716–718 Jan. 1982

  28. Roberts G. E.: A continuum of relative equilibria in the five-body problem. Phys. D 127, 141–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roberts, G. E.: Stability of relative equilibria in the planar n-vortex problem, SIAM J. Appl. Dyn. Syst. 12, no. 2, 1114–1134 2013

  30. SageMath, the Sage Mathematics Software System (Version 7.3), The Sage Developers, 2016, http://www.sagemath.org.

  31. Schmidt, D.: Central configurations and relative equilibria for the N-body problem, Classical and celestial mechanics (Recife, 1993/1999), Princeton Univ. Press, Princeton, NJ, 1–33 2002

  32. Shub, M.: Appendix to Smale’s paper: “Diagonals and relative equilibria,” Manifolds—Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, vol. 197, Springer, Berlin, 199–201 1971

  33. Smale, S.: Problems on the nature of relative equilibria in celestial mechanics, Manifolds—Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, vol. 197, Springer, Berlin, 194–198 1971

  34. Sturmfels, B.: Solving Systems of Polynomial Equations, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, no. 97, Amer. Math. Soc. 2002

  35. Yarmchuk E. J., Gordon M. J. V., Packard R. E.: Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth E. Roberts.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, G.E. Morse Theory and Relative Equilibria in the Planar n-Vortex Problem. Arch Rational Mech Anal 228, 209–236 (2018). https://doi.org/10.1007/s00205-017-1190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1190-4

Navigation