Skip to main content
Log in

The range of holomorphic maps at boundary points

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a boundary version of the open mapping theorem for holomorphic maps between strongly pseudoconvex domains. That is, we prove that the local image of a holomorphic map \(f{:\,}D\rightarrow D'\) close to a boundary regular contact point \(p\in \partial D\) where the Jacobian is bounded away from zero along normal non-tangential directions has to eventually contain every cone (and more generally every region which is Kobayashi asymptotic to a cone) with vertex at \(f(p)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Rende (1989)

    MATH  Google Scholar 

  2. Abate, M.: The Lindelöf principle and the angular derivative in strongly convex domains. J. Anal. Math 54, 189–228 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abate, M.: Angular derivatives in strongly pseudoconvex domains. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 23–40. Proceedings of Symposia in Pure Mathematics, 52, Part 2, American Mathematical Society, Providence, RI (1991)

  4. Abate, M.: Angular derivatives in several complex variables. In: Zaitsev, D., Zampieri, G. (eds.) Real Methods in Complex and CR Geometry. Lecture Notes in Mathematics, 1848, pp. 1–47. Springer, Berlin (2004)

    Google Scholar 

  5. Bracci, F.: Common fixed points of commuting holomorphic maps in the unit ball of \(C^n\). Proc. Am. Math. Soc. 127, 1133–1141 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Classification of semigroups of linear fractional maps in the unit ball. Adv. Math. 208, 318–350 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bracci, F., Zaitsev, D.: Boundary jets of holomorphic maps between strongly pseudoconvex domains. J. Funct. Anal. 254, 1449–1466 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cowen, C.C., Pommerenke, Ch.: Inequalities for the angular derivative of an analytic function in the unit disk. J. Lond. Math. Soc. 26(2), 271–289 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Diederich, K., Fornæss, J.E., Wold, E.F.: Exposing points on the boundary of a strictly pseudoconvex or locally convexifiable domain of finite \(1\)-type. J. Geom. Anal. doi:10.1007/s12220-013-9410-0

  10. Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frostman, O.: Sur les produits de Blaschke. Kungl. Fysiogr. Sälsk. i Lund. Försh. 12, 169–182 (1942)

    MathSciNet  Google Scholar 

  12. Lloyd, N.: Degree Theory. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  13. Pommerenke, C.: Boundary behaviour of Conformal Mappings. Springer, Berlin (1992)

    Book  Google Scholar 

  14. Rudin, W.: Function Theory in the Unit Ball of \(\mathbb{C}^n\). Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241. Springer, New York, Berlin (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Bracci.

Additional information

Partially supported by the ERC grant “HEVO—Holomorphic Evolution Equations” n. 277691.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracci, F., Fornæss, J.E. The range of holomorphic maps at boundary points. Math. Ann. 359, 909–927 (2014). https://doi.org/10.1007/s00208-014-1028-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1028-4

Navigation